

Converting UML to OWL Ontologies
Dragan Gašević, Dragan Djurić, Vladan Devedžić

University of Belgrade, POB 52, Jove Ilića 154, Belgrade, Serbia and
Montenegro

gasevic@yahoo.com, dragandj@mail.ru,
devedzic@galeb.etf.bg.ac.yu

Violeta Damjanović
Postal Savings Bank, 27.marta 71,
Belgrade, Serbia and Montenegro

vdamjanovic@posted.co.yu

ABSTRACT
This paper presents automatic generation of the Web Ontology
Language (OWL) from an UML model. The solution is based on
an MDA-defined architecture for ontology development and the
Ontology UML Profile (OUP). A conversion, that we present
here, transforms an ontology from its OUP definition (i.e. XML
Metadata Interchange – XMI) into OWL description.
Accordingly, we illustrate how an OUP-developed ontology can
be shared with ontological engineering tools (i.e. Protégé).

Categories and Subject Descriptors

I.2.5 [Artificial Intelligence] Programming Languages and
Software – Expert system tools and techniques

General Terms
Design

Keywords
Ontology, UML Profiles, XSLT, OWL

1. INTRODUCTION
In order to bring ontology development process closer to wider
software engineering population, some authors propose usage of
software engineering techniques, especially the UML since it is
the most accepted software engineering standard [5]. However,
none of current solutions of this problem supports full ontology
definition: definition of non-limited degree of property hierarchy,
modeling ontology instances, etc. We believe that these
limitations can be overcome using UML’s extensions (i.e. UML
profiles) [3], as well as other OMG’s standards (e.g. Model
Driven Architecture – MDA).

Accordingly, we have implemented an eXtensible Stylesheet
Language Transformation (XSLT) that transforms the XML
Metadata Interchange (XMI) representation of a UML Profile (i.e.
The Ontology UML Profile - OUP) into the forthcoming Web
Ontology Language (OWL) [1]. With this UML’s model
transformation we can extend present UML tools, so they can be
used for full ontology development without need for other
ontological tools. This solution is a part of the Good-Old-AI
research group (http://goodoldai.org.yu) efforts to develop an
ontology architecture based on the OMG’s initiative [6].

2. FORMAL FRAMEWORK OF OUR
SOLUTION
An OMG’s initiative should define a suitable framework for
ontology development using the MDA standards [6]. According

to this we give a proposal of such architecture [2]. The core of this
architecture is the Ontology Definition Metamodel (ODM). Here
we shortly overview the OUP that is based on the ODM.
Class is one of the most fundamental concepts in ODM and
OUP. In ODM, Ontology Class concept is represented as an
instance of the Meta-Object Facility (MOF) Class, and has
several concrete species, a: Class, Enumeration, Union,
Intersection, Complement, Restriction, and
AllDifferent. In Figure 1 we show a part of the well-known
Wine ontology. WineDescriptor is equivalent to the union of
classes WineTaste and WineColor, whereas WineColor is
an enumeration of WineColor instances: White, Rose, and
Red. We should note that we have two anonymous classes
(Union and Enumeration). See [2] for details about the OUP.

Figure 1. The Ontology UML profile class-oriented

stereotypes (an excerpt of the Wine ontology)

3. OVERVIEW OF OUR SOLUTION: XSLT
The main idea of having an UML profile for ontology
development is to use present UML tools. In fact, current UML
tools mainly support XMI standard – an MDA’s XML-based
standard for metametamodel, metamodel, and model sharing.
Since this format is XML-defined one can employ XSLT to
transform XMI documents into target documents that must not be
XML documents. These target documents can be written in some
ontology language, for example OWL. On the other hand, when
we use an approach based on XSLT (i.e. XSLT principle) we do
not need to change a UML tool, instead we just apply an XSLT on
an output document of the UML tool. Accordingly, we can use
well-defined XML/XSLT procedure that is shown in Figure 2.
A UML tool (e.g. Poseidon for UML) can export an XMI
document that an XSLT processor can use as the input. An OWL
document is produced as the output, and this format can be
imported into a tool specialized for ontology development (e.g.
Protégé), where it can be further refined. On the other hand, since
we obtain an OWL described document, we do not need to use
any ontology tool, instead we are able to use this ontology
description as a final OWL ontology.

Copyright is held by the author/owner(s).
WWW 2004, May 17–22, 2004, New York, New York, USA.
ACM 1-58113-912-8/04/0005.

488

XMI XSLT

processor

XSLT

export

share

input output

import

Real ontology-
based

applications

OWL

Figure 2. Used XSLT principle: extensions of present UML

tools for ontology development
The XSLT, we have implemented for mapping from XMI (OUP-
based) format to the OWL XML description, contains a set of
rules (i.e. templates) that match XMI constructs and transform
them into equivalent OWL primitives. While developing these
rules we had to face some serious obstacles resulting from evident
differences between source and target format. We note some of
them:
− The structure of an XMI document is fairly awkward since it

contains full description of an UML model.
− The OUP, in some cases, uses more than one UML construct to

model one OWL element. It is especially difficult because each
UML construct is a different stereotype.

− UML tools can only draw UML models, but they do not have
an ability to check the completeness of an OUP ontology. Thus,
the XSLT is incurred to check XMI documents.

− The XSLT must make difference between classes that are
defined in other classes and classes that can be referenced using
their ID. Accordingly, we included into OUP odm.anonymous
tagged values that help us detect these two cases.

In order to depict an output OWL document that we obtain as the
XSLT’s result, we give Figure 3. This figure shows the OWL
description classes we have defined in Figure 2. It is interesting to
note how OUP’s classes that have tagged value odm.anonymous
are mapped into OWL (e.g. WineDescriptor has an
equivalent anonymous class that is defined as an union of
WineTaste and WineColor classes).

4. EXPERIENCES
The developed solution acts as an extension for standard UML
tools and thus enables us to create complete OWL ontologies
without need to use ontology-specialized development tools. We
have decided to use Poseidon for UML since it supports all
requirements for the ODM. We decide to generate OWL
ontologies in the fashion similar to the Protégé’s OWL plugin.
Hence, we have managed to provide an additional way to import
Poseidon’s models into Protégé through the OWL. Of course,
since Protégé has more advanced features for ontology
development, an OUP-defined ontology can be further refined.

We have tested our solution on the well-known example of the
Wine ontology. Firstly, we represented this ontology in Poseidon
using OUP. Then we exported this extended UML into XMI, and
after performing the XSLT, we obtained an OWL document.
Finally we imported this document into Protégé using its OWL
plugin.
The current XSLT version has a limitation since it does not
support packages (i.e. the OUP multi-ontology development).
Actually, the OUP supports multiple ontologies within the same

XMI project, but the XSLT standard and XSLT processors
introduce this limitation.

 <owl:Class rdf:ID="WineDescriptor">
 <owl:equivalentClass>
 <owl:Class>
 <owl:unionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#WineTaste"/>
 <owl:Class rdf:about="#WineColor"/>
 </owl:unionOf>
 </owl:Class>
 </owl:equivalentClass>
 </owl:Class>

 <owl:Class rdf:ID="WineTaste">
 <rdfs:subClassOf rdf:resource="#WineDescriptor"/>
 </owl:Class>

 <owl:Class rdf:ID="WineColor">
 <rdfs:subClassOf rdf:resource="#WineDescriptor"/>
 <owl:equivalentClass>
 <owl:Class>
 <owl:oneOf rdf:parseType="Collection">
 <WineColor rdf:about="#Red"/>
 <WineColor rdf:about="#Rose"/>
 <WineColor rdf:about="#White"/>
 </owl:oneOf>
 </owl:Class>
 </owl:equivalentClass>
 </owl:Class>

Figure 3. Resulting OWL description –classes generated for
the OUP model from Figure 2

Currently, we have developed two ontologies using the OUP that
we later transformed in OWL using the XSLT. These two
ontologies are: the ontology of saints and philosophers, and the
Petri net ontology. The first ontology was developed using the
Porphyry's tree method. The Petri net ontology was developed in
order to provide the Semantic Web support for Petri nets [4].

5. CONCLUSIONS
We believe that this solution can be useful to all software
engineering practitioners who participate in an ontology
development process. Using well-known UML syntax, the
practitioners do not need to learn how to use ontology tools. In
the future we are planning to improve current implementation, so
that it can support development of multiple ontologies (using
UML’s packages), and show how the Ontology UML Profile can
be used for modular ontology development (on the example of the
Petri net ontology and Petri net dialects).

6. REFERENCES
[1] Bechhofer, S. et al (2004). OWL Web Ontology Language

Reference, W3C Recommendation [Online]. Available:
http://www.w3.org/TR/2004/REC-owl-ref-20040210/

[2] Djurić, D. et al, Ontology Modeling and MDA. Accepted for
pub. in Journal on Object Technology 4, 1 (2005).

[3] Duddy, K. UML2 Must Enable A Family of Languages,
Communications of the ACM 45, 11 (Nov. 2002), 73-75.

[4] Gašević, D., and Devedžić, V., Reusing Petri Nets Through
the Semantic Web, in Proc. of the 1st European Semantic
Web Symposium (Heraklion, Greece, 2004) accepted for
publication.

[5] Kogut, P., et al. UML for Ontology Development, The
Knowledge Engineering Review 17, 1 (2002), 61-64.

[6] OMG Ontology Definition Metamodel-RFP (2003) [Online].
Available: http://www.omg.org/cgi-bin/doc?ad/2003-03-40

489

