
 Experiments with Persian Text Compression for Web

Farhad Oroumchian
University of Wollongong in

Dubai
 POBOX 20183, Dubai,

UAE
+971-503585420

FarhadOroumchian@u
owdubai.ac.ae

Ehsan Darrudi
Dept. of ECE,

University of Tehran
POBOX 14395-515, North
Kargar Ave, Tehran, IRAN

+98-21-8020403-3381
e.darody@ece.ut.ac.ir

Fattane Taghiyareh
Dept. of ECE,

University of Tehran
POBOX 14395-515, North
Kargar Ave, Tehran, IRAN

+98-21-8020403-3381
ftaghiyar@ut.ac.ir

Neeyaz Angoshtari
Computer Science Dept.
University of Southern

California
Los Angeles, CA 90089,

USA
neeyazan@usc.edu

ABSTRACT
The increasing importance of Unicode for text encoding implies a
possible doubling of data storage space and data transmission time,
with a corresponding need for data compression. The approach
presented in this paper aims to reduce the storage and the
transmission time for Persian text files in web-based applications
and Internet. The basic idea here is to compute the most repetitive
n-grams in the Persian text and replace them by a single character
in the user-defined sections of the Unicode. The compression will
be done on the server side once and the decompression process is
eliminated completely. The rendering process in the browser will
do the decompression. There is no need for any additional
program or add-ins for decompression to be installed on the
browser or client side. The user needs only to download the
proper Unicode font once. A genetic algorithm is utilized to select
the most appropriate n-grams. In the best case, we have achieved
52.26 % reduction of the file size. The method is general, and
applies equally well to English and other languages.

Categories and Subject Descriptors
E.4 [Data]: Coding and information theory --- Data compaction
and compression.

General Terms
 Languages, Algorithms, Measurement

Keywords
N-gram Compression, Farsi, Unicode, Genetic Algorithm

1. INTRODUCTION
With the increase in the amount of non-English or Non-Latin text
in the Internet, there is a growing need for the compression
algorithms that can use the characteristics of these languages.
Most of the algorithms that have been developed for text
compression are adaptive dictionary-based compression
algorithms [5]. In spite of their good compression ratios, they
require considerable amount of computing resources at the
decompression end.

Unicode [4] is an encoding system that provides a unique code for
every character, used in all the major languages written today. The
original goal is to use a single 16-bit encoding that provides code
points for more than 65,000 characters. There are about 6,700
unused code points for future expansions.

We have utilized an n-gram based algorithm and experimented
with Persian language. By using a genetic algorithm (GA), we
have selected the right combination of strings that should be
condensed. We have assigned codes and font glyphs for these
strings from the user-defined section of the Unicode. In this way,
the reduced files are still directly viewable because newly
assigned codes have glyphs associated with them. In fact this
approach is more suitable for corporate intranets that share large
volumes of text in their internal networks.

2. N-GRAM FREQUENCIES
These experiments are done on a Persian text collection that
contains laws and regulations passed by Iran Parliament. In the
first step the frequencies of 2-grams, 3-grams, 4-grams and 5-
grams were calculated. In addition to Persian characters, numbers
and punctuation marks and blank character (space) were also
considered (totally 57 characters). We used a simple n-gram table
to count frequency of each combination. We didn’t take in to
account sequences larger than 5-grams for time considerations.

In general, replacing 2-grams produces the most reduction, and
replacing 5-grams results in the least reduction. Figure 1 shows
the real effect of replacing n-grams using 500 most frequent n-
grams in each group. The sample file size was 46 MB of text
encoded in Unicode. As it can be seen in the figure, shorter n-
grams lend themselves to compression better than longer n-grams.
For example to reduce the file size to 35MB, we only need 73 2-
grams. However, we need 144 3-grams or 260 4-grams or 440 5-
grams in order to achieve the same level of reduction.

20

25

30

35

40

45

50

0 40 80 120 160 200 240 280 320 360 400 440 480

R
e
al

 F
il
e
 S

iz
e
 R

e
d
u
ct

io
n
 (

M
B
)

2-grams 3-grams 4-grams 5-grams
Fig. 1- Accumulative reduction of file, after practically

replacing n-gram terms with new codes

Copyright is held by the author/owner(s).
WWW 2004, May 17–22, 2004, New York, New York, USA.
ACM 1-58113-912-8/04/0005.

478

3. N-GRAM SELECTION BY GA
Finding the best set of n-grams for substitution (best dictionary) is
NP-hard [3], and many heuristics have been proposed [5]. The
novelty of the approach presented here is in using a Genetic
Algorithm (GA) [2] to select best combination of n-grams to
achieve optimal (or near optimal) compression ratio with the
minimum number of n-grams for replacement.
As depicted in figure 1, small numbers of replacements can
produce very good results. Therefore there is no need to examine
all the n-grams of the groups in order to find the optimal solution.
In this case we used 500 best n-grams of each group. That is, the
biggest individual combination that would be generated and
computed by genetic algorithm was 500-500-500-500 (5, 4, 3 and
2-grams, respectively). It is obvious that without any restriction,
the best solution is the one that uses maximum number of n-grams
because it causes most size reduction on the sample file. So, we
didn’t use file size reduction as fitness value. We needed a
solution to produce good reduction with reasonable number of n-
grams. We used the following formula (1) as our fitness function.

β+
=

size

reduction
fitness (1)

Where, for each combination of 5, 4, 3 and 2-grams, reduction is
the saving in the storage achieved by replacing its n-grams with
new codes; size is the proportional size of the combination. It is
computed by dividing the size of the combination (total number of
5, 4, 3 and 2-grams) by the maximum possible size of
combinations (4×500 = 2000). Inverse relation between fitness
and size restrains evolution from choosing very large
combinations. Although, larger combinations may cause greater
compression ratios but they need also more efforts to define new
codes and create appropriate font glyphs. β is a constant (for each
experiment) that controls genetic algorithm convergence. Indeed,
β value determines how much the size of the solution is important
for us. Small value of β implies that we need a solution with
minimum number of n-grams but still reasonable compression
ratio. In the other hand, big β weakens the influence of size and
lets the evolution to choose larger combinations, thus more
compression. We ran our genetic algorithm for different values of
β. Table 1 shows best combinations achieved at the end of
evolutions and their compression ratios.

Table 1- Final GA solutions for different β values with
achieved compression ratios

Best Solution
β

Value 5-
grams

4-
grams

3-
grams

2-
grams

total

Comp.
Ratio
(%)

0 0 0 0 2 2 4.30

0.25 9 6 3 17 35 24.35

0.5 23 6 23 60 112 34.25

1.5 45 16 43 181 285 42.35

2.5 74 26 50 260 410 45.44

3.5 132 16 90 287 525 47.42

4.5 164 26 173 385 748 50.06

5.5 289 62 188 489 1028 52.26

As it is apparent from table 1, there is a trade-off between the
number of required new codes and compression ratio. β values
0.25, 0.5, 1.5 seems to be appropriate for most applications.
However, higher β values can be considered if higher compression
is required.

4. FONT CREATION
After choosing the correct solution with appropriate number of 5,
4, 3 and 2-grams from table 1, the new codes should be allocated
in the user-defined section of Unicode. This section currently,
does not contain any character assignments and covers E000-
F8FF (6400 code points). Finally, new glyphs should be created
and added to the current font file that supports Unicode [1]. In
Persian (and Arabic), each letter may have different presentation
forms according to its location in the word. For example, there are
four forms for “غ”: an initial “ غ”, a medial “غ”, a final“غ” and an
isolated “غ”. Thus, for some n-grams it is required to create
glyphs for all presentation forms. Most of the top n-grams begin
or end with blank (space) character, so the number of excess
presentation glyphs shouldn’t be high.

5. CONCLUSION AND FUTURE WORK
We have presented the idea of compressing Persian language text
by replacing carefully selected 2, 3, 4, and 5-grams and placing
these n-grams in the user defined section of the Unicode to avoid
decompression. After calculating the frequency of each n-gram, a
genetic algorithm was employed to select the right n-grams of
each group in order to get an optimal file reduction with the least
possible number of n-grams. The highest percentage of file
reduction was reached was 52.26 percent.

The drawback to this method could be its dependence on the text
collection. Our experiments are based on a text collection that is
about Iranian laws and regulations which implies that the list of
high frequency n-grams (especially larger ones) may be biased.
Some 5-grams such as “ _ماده ” (article), “ _نامه ” (letter), “ قانون”
(law), “وزارت” (ministry) appeared as good candidates for
replacement while they are not very common in Persian general
documents. However, this could also present an opportunity. For
example different corporations can use different n-grams for
compression of their internal text that maximizes their unique
collection.

The approach presented here doesn’t presuppose anything about
the structures of the language. Thus it can be used for other
languages with minimal modifications. We aim to test our method
with languages that have structural similarities with Persian in
terms of the number of the alphabets and the repetition of
linguistic information inherent in the structures of the languages.

6. REFERENCES
[1] Bigelow, C. and Holmes, K. The design of a Unicode font,

Electronic Publishing, Vol. 6, No. 3, 1993, pp. 289–305.
[2] Holland, J.H. Adaptation in Natural and Artificial Systems,

University of Michigan Press, Ann Arbor, 1975.
[3] Storer, J.A. and Szymanski, T.G. Data compression via

textual substitution, Journal of the ACM, Vol. 29, No. 4,
October 1982, pp. 928-951.

[4] The Unicode Consortium, The Unicode Standard, Version
3.0, Addison-Wesley Press, Massachusetts, 2000.

[5] White, H.E. Printed English compression by dictionary
encoding, Proceedings of the IEEE, Vol. 55, No 3, March
1967, pp 390-396.

[6] Ziv, J., and A. Lempel. A universal algorithm for sequential
data compression, IEEE Transactions on Information
Theory, 23 (1977) 337-343.

479

