

 VersaTutor – Architecture for a Constraint-Based
Intelligent Tutor Generator

Viswanathan Kodaganallur
Seton Hall University

400 South Orange Avenue
South Orange, NJ, USA

(1) 973-761-9716

kodagavi@shu.edu

Rob R. Weitz
Seton Hall University

400 South Orange Avenue
South Orange, NJ, USA

(1) 973-761-9540

weitzrob@shu.edu

David Rosenthal
Seton Hall University

400 South Orange Avenue
South Orange, NJ, USA

(1) 973-761-9250

rosentdv@shu.edu

ABSTRACT

Intelligent tutoring systems have demonstrated their utility in a
variety of domains. However, they are notoriously resource
intensive to build. We report here on the development of a
software tool that enables non-software developers to
declaratively create intelligent tutors. This intelligent tutor
generator creates applications with rich user interaction and
powerful theory-based remediation capabilities. It utilizes the
Constraint Based Tutoring paradigm and is generic enough to
create tutors in several domains. It is easily extensible through
plug-ins.

Categories and Subject Descriptors
K.3.1 [Computer uses in education]: Computer assisted
instruction (CAI), Distance learning.

General Terms
Design, Human Factors.

Keywords
intelligent tutoring, constraint based tutors, model tracing tutors,
instructional technology, distance learning

1. INTRODUCTION
Intelligent Tutoring Systems (ITS) represent a form of
computer-based training in which the system uses a knowledge
base to provide guidance to the student as the student interacts
with the system. Such systems become increasingly relevant in
the context of large amounts of training being delivered over the
WWW. Building ITS has generally required significant software
development expertise in addition to domain knowledge;
authoring tools have been created to assist in this development
[3]. This paper is an interim report on the architecture of an
Intelligent Tutor Generator (ITG) based on the Constraint Based
Tutoring paradigm [2]. We call it a tutor generator, as it enables
the declarative creation of tutors in a variety of domains by non-
software developers.

2. INTELLIGENT TUTORING
Intelligent tutoring is generally set in a problem-solving context.
Tutoring is achieved through remediation provided while the
student works on a problem. As the student interacts with the

ITS by presenting either a partial or complete solution for
evaluation, the ITS builds a student model (based on its own
stored domain and problem-solving knowledge) and uses this to
provide remediation. ITS are often seen as adjuncts to classroom
teaching and hence usually do not incorporate features to teach
concepts from scratch and in isolation. ITS can be ad-hoc, or
based on formal theories of tutoring. Among ITS with
theoretical underpinnings, Model Tracing Tutors [1] and
Constraint Based Tutors are prominent.

3. VERSATUTOR – A TUTOR
GENERATOR
Fig 1 shows the generic components of ITS. VersaTutor has
generic versions of each of the components and can be used to
create tutors in a broad variety of application domains. All the
domain/problem specific information is supplied as data to
VersaTutor. The system generates a problem-specific user
interface based on the data. The constraint engine is generic and
can handle constraints based on extensive string, numeric,
logical and regular expression processing with numerous built-
in functions that encompass the requirements of several
domains. We created a powerful, flexible language with a formal
grammar for expressing constraint conditions. Fig 2 shows the
main screen of a VersaTutor session. It shows tutors from three
domains: statistical hypothesis testing, elementary algebra and
Java programming language syntax. VersaTutor is not currently
web-based, but we have plans to web-enable it.
The student uses the “WorkArea” tab (Fig 3) to solve the
problem. In our present implementation there are two kinds of
interfaces supported for the work area, and the author of a tutor
can choose the kind that is suitable for a problem. In the “Form”
based user interface (shown in Fig 3), the student is presented
with a list of available variables for the problem type in the drop
down list on top. Selecting the variables appropriate for the
specific problem from a master list of variables for the problem-
type is one of the student’s tasks. The “Text” type of user
interface, suitable when the student’s answer is a single text
entity as opposed to a number of values typed into different
fields, is shown in Fig 4. Fig 5 shows the situation after the
student has submitted a partial solution (in the “Form” user
interface) for evaluation and the tutor has provided feedback
(Note that one of the variables is marked “Correct” in the
“answer status” column, whereas the other variable is marked
“Wrong”.) In case of errors, the tutor provides detailed feedback
in the “Feedback” tab. It is quite common that the student’s
submission violates several constraints.

Copyright is held by the author/owner(s).
WWW 2004, May 17-22, 2004, New York, New York, USA.
ACM 1-58113-912-8/04/0005.

474

4. CONCLUSIONS
This paper has described functionality and architecture of
VersaTutor, a tutor generator that enables the creation of tutors
with no programming and whose functionality can be enhanced
through minimal programming. The base functionality is
complete enough to provide rich interaction and remediation.
5. ACKNOWLEDGMENTS
The authors wish to thank the Teaching Learning and
Technology Center (TLTC) of Seton Hall University for having
supported this research in the form of a CDI grant.
6. REFERENCES
[1] Anderson, J. R., Corbett, A. T., Koedinger, K., & Pelletier,

R. (1995). Cognitive tutors: Lessons learned. The Journal
of Learning Sciences, 4 (2), 167-207.

[2] Mitrovic, A., Mayo, M., Suraweera, P. and Martin, B.,
“Constraint-Based Tutors: A Success Story,” in L.
Monostori, JVAncza and M. Ali (Eds.), Proceedings of the
14th International Conference on Industrial and
Engineering Applications of Artificial Intelligence and
Expert Systems (IEA/AIE – 2001), pp. 931-940, Springer-
Verlag, 2001.

[3] Murray, T., “Authoring Intelligent Tutoring Systems: An
Analysis of the State of the Art,” International Journal of
Artificial Intelligence in Education, (10), 98-129, 1999.

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

475

