

openMVC: A Non-proprietary Component-based
Framework for Web Applications

Ronan Barrett
Dublin City University
School of Computing

Dublin 9, Ireland
+353 1 700 5616

rbarrett@computing.dcu.ie

Sarah Jane Delany
Dublin Institute of Technology

School of Computing
Dublin 8, Ireland
+353 1 402 4936

sarahjane.delany@dit.ie

ABSTRACT
The lack of standardised approaches in the development of web-
based systems is an ongoing issue for the developers of
commercial software. To address this issue we proposes a hybrid
development framework for web-based solutions that combines
much of the best attributes of existing frameworks but utilises
open, standardised W3C technologies where possible. This
framework called openMVC is an evolution of the Model-View-
Controller (MVC) pattern. An implementation of openMVC has
been built over a 5-tier architecture using Java and .NET.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures –
Patterns; D.2.12 [Software Engineering]: Interoperability –
Distributed Objects; D.2.13 [Software Engineering]: Reusable
Software – Reuse Models; D.2.7 [Software Engineering]:
Distribution, Maintenance, and Enhancement – Portability;

General Terms
Design, Reliability, Standardization.

Keywords
MVC, Patterns, Frameworks, Web Services, XML, XSLT, XML
Schema, W3C.

1. INTRODUCTION
The lack of standardised development approaches to building
web-based solutions in many organisations typically leads to poor
maintainability. An associated problem is the numerous web
technologies currently available which are proprietary leading to
vendor lock-in to proprietary software.
Software patterns and frameworks provide ready made solutions
to common problems that can be reused again and again. The
Model-View-Controller (MVC) [1,2] pattern is one of the oldest
design patterns and is also perhaps the best known. MVC
logically splits applications into a triad of independent
components or object roles. A number of web technologies and
frameworks have implemented MVC such as Struts [3] and
Maverick [4].
This paper presents openMVC, an MVC based framework that
will promote a standardised component-based development

approach for web-based systems and will utilise non-proprietary
interoperable technologies to avoid vendor lock-in.
This paper is organized as follows: In Section 2, the openMVC
framework is introduced. Section 2.1, the framework architecture
is explored at the logical level. Section 2.2, the components of the
framework are introduced. Section 3, an implementation of the
framework is discussed. Section 4 summarises our conclusions.

2. openMVC FRAMEWORK
The MVC pattern provides an ideal starting point for discussion
of the openMVC framework. The openMVC framework combines
a number of the approaches taken by existing framework
implementations like Struts and Maverick to produce a hybrid
MVC implementation.
We extend MVC beyond the separation of presentation
information, controlling logic and business logic concerns. We
present an architecture where the style information (fonts, colours
etc.), layout (tables, headings etc.), controller logic (request
handling), business logic, data validation constraints and the
persistent data are separate components. We do not rely on any
specific technology instead we utilise many of the open,
standardised technologies defined and developed by the World
Wide Web Consortium (W3C) [5] including XML, XML Schema
and XSLT. Figure 1 below shows the architecture of openMVC.

Figure 1. openMVC’s architecture.

2.1 openMVC Architecture
The framework is implemented using a 5-tier architecture. The
first tier is the client.

Copyright is held by the author/owner(s).
WWW 2004, May 17-22, 2004, New York, New York, USA.
ACM 1-58113-912-8/04/0005.

464

The second tier, the Presentation Logic Layer (PLL) is the web
server. At this layer the data is given a presentation structure that
the browser will be able to display. Details of how the layout
elements should look are defined in the style information. Finally
data validation constraints which have been sent as XML with the
data (from the Model), are transformed to JavaScript and sent to
the client. The PLL communicates with the third tier via a Remote
Procedure Call (RPC) mechanism.
The third tier, the Business Logic Layer (BLL), typically located
on an application server implements the domain specific business
processes and rules as well as defining all the data validation
constraints.
The fourth tier or Data Abstraction Layer (DAL) abstracts the
Database Management System (DBMS) from the code that
accesses it. The BLL uses this tier to manipulate the database.
The final tier is the database where the persistent data for the
solution exists.

2.2 openMVC Components
The framework contains a number of discrete components at each
layer. The separation provided by these components allows for
different concerns within the application to be isolated from other
unrelated concerns. A number of these components are looked at
in detail below.
The MVC’s View object role is comprised of two components.
The Styling Information component defines presentation styles
using Cascading Style Sheets (CSS), which are associated with
the structural layout elements. The use of CSS allows style
information to be separated from the data structure. A Layout
component encapsulates the presentation layout information. The
layout will be written using XSLT stylesheets.
The MVC’s Controller object role also consists of two
components. The Controller Logic component is independent of
the View object role and makes the controller workflow logic
more readable and easier to maintain as no layout or style
information is interspersed within it. A Transformer component
transforms the XML returned by the BLL to XHTML using the
Layout component. It also transforms the validation constraints
returned by the BLL and creates a client side validation script at
run time based on these constraints. This script is then returned
with the page requested by the client.
The MVC’s Model object role is comprised of three components.
The Business component represents the objects that exist within a
business and the processes that can occur between these objects.
The Validation Constraints component ensures the data integrity
and security of the system by defining the data that is valid in the
context of the business. A Validation Transformer component
serializes the Business components into a format that can be
validated against the Validation Constraints component to ensure
system integrity is upheld.

3. IMPLEMENTATION
A simple e-commerce shopping cart application was built using
the openMVC framework.

The DAL was written entirely in Microsoft’s .NET framework
using the C# language. Stored procedures were used exclusively
for improved encapsulation and maintainability.
The BLL was also written in C# using .NET and deployed on a
Microsoft IIS web server. Security was provided by the .NET role
based security classes. Like any other comparable application
server software such as J2EE, .NET provides enterprise services
such as transaction control, persistence and security.
The validation constraints for the classes on the BLL are specified
in XML Schema files. The business class instances must be
serialised to a format to which the XML Schema can be applied
and validation can then occur using an XML validating parser.
The BLL classes are exposed via web service functionality
provided by the ASP.NET web service technology. The PLL was
developed in Java using Sun’s Java Servlet technology. Apache
Axis an open source implementation of a SOAP toolkit was used
to gain interoperability with the web service exposed on the BLL.
The PLL was deployed on an Apache Tomcat Servlet container.
XSLT templates were cached and reused to improve performance.
The Apache HTTP Web Server provided load balancing
functionality to the framework implementation.

4. CONCLUSION
We have presented openMVC a framework based on the MVC
pattern. openMVC allows the Style Information, Layout and
Validation Constraints components to be updated with no code
change or recompile requirement. Redundancy is also reduced as
validation constraints, style and layout information are never
repeatedly defined. Apart from facilitating faster maintenance, this
promotes easier configuration management and reduces version
control problems in application rebuilds. Our use of standardised
W3C technologies provides for excellent transferal of knowledge
and skills across heterogeneous platforms and languages, without
the risk of vendor lock-in.

5. ACKNOWLEDGMENTS
The author thanks all at the School of Computing, Dublin
Institute of Technology for their support in the creation of this
paper.

6. REFERENCES
[1] Krasner, G. E. and Pope, S. T. A Cookbook for Using the

Model-View-Controller User Interface Paradigm in
Smalltalk-80. Journal of Object-Orientated Programming,
1(3), Aug/Sep 1988, pp26-49.

[2] Gamma, E., Helm, R., Johnson, R., & Vlissides, J. Design
Patterns: Elements of Reusable Design. Reading,
Massachusetts: AddisonWesley, 1995

[3] Apache Struts Web Application Framework, The Apache
Software Foundation (2004), http://jakarta.apache.org/struts/.

[4] Maverick Project, Source Forge (2004),
http://mav.sourceforge.net

[5] World Wide Web Consortium (2004). http://www.w3c.org

465

