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ABSTRACT 
In this paper, we address the problem of matching I/O 
descriptions of services to enable their automatic service 
composition. Specifically, we develop a method of semantic 
schema matching and apply it to the API schemas constituting the 
I/O descriptions of services. The algorithm assures an optimal 
match of corresponding entities by obtaining a maximum 
matching in a bi-partite graph formed from the attributes.  

1. INTRODUCTION 
With an increasing number of organizations putting their business 
competencies as a collection of web services, it is conceivable that 
other users could integrate  them to create  new value-added 
services in ways that were not anticipated by their original 
developers. The assembly of services currently requires 
considerable manual intervention, including examination of the 
API descriptions of services, and writing of specific code to chain 
a sequences of services using attributes in the I/O descriptions of 
services. Semantic schema matching used earlier for data schemas 
[4,6] can also be applied to APIs allowing automatic orchestration 
relieving the burden of programming by end users. It  can also 
enable automatic service composition when augmented with 
service discovery techniques [1,3,5,8].  
In this paper, we focus on the automatic matching of API 
descriptions of services.  This is a difficult problem, in general, as 
the relationship between attributes may not be obvious from their 
names, types and structural grouping of attributes. Furthermore, a 
source attribute may be split across multiple destination attributes 
& vice versa. 

2. SEMANTIC SCHEMA MATCHING 
We now formulate the problem of semantic match of the APIs of a 
set of services. The source and target attributes can be regarded as 
the nodes of a bi-partite graph. Their correspondence is then  a 
matching in the bipartite graph. If the weights on the edges of the 
bipartite graph reflect the similarity of the attributes, the optimal 
matching is a matching of maximum cardinality and maximum 
weight.  The semantic schema matching approach, therefore, is to 
reflect the knowledge of  API variables in determining similarity 
of attributes and use a conventional maximum matching 
algorithm. Specifically, we used the algorithm of Goldberg and 
Kennedy[2]. In this algorithm, the matching is computed by 
setting up a flow network  with weights such that the maximum 
flow corresponds to a maximum matching [2].  

2.1 Computing Similarity between attributes 
We derive the similarity between attributes using four sets of cues, 
namely, (1) lexical name matching, (2) semantic name matching, 
(3) type matching, and (4) structural matching. Due to space 
limitations, we will expand on semantic similarity while briefly 
describing other similarity metrics used.  The lexical similarity 
measure captures the similarity in the spelling of names used in 
APIs (eg. lname, lastname) and is measured as   

L(A,B) = 2 * Length(LCS(A,B))/(Length(A) + Length(B))     (1) 
Where A,B are the attributes, and LCS(A,B) is longest common 
subsequence of A and B. 
Type matching: 
For APIs the type of attributes is a strong cue in matching, for 
without proper type casting, the service cannot be launched. The 
type similarity measure is given by: 
Type(A,B) = 1.0 (lossless conversion), = 0.5 (lossy), = 0 
(otherwise)         (2)         
Where the lossless conversion is determined by navigating the 
reference type hierarchy of a language (eg. int to float is lossless, 
while float to int is lossy). The existence of an explicit type 
casting function (eg. 2d array to 1d vector converter code) is also 
a case of lossless conversion.  
Structural matching: 
Using the rationale that the grouping of attributes under a node of 
a particular height in the API schema denotes a concept 
abstraction used by programmers, the structural similarity is 
measured by  
Struct(A,B) = 1 - (|D(A) -D(B)|)/max{D(Gi), D(Gj)}                (4) 
 
where D(A) and D(B) are the height of the attributes in their 
respective schema trees Gi and Gj and  D(Gi) and D(Gj) are the 
heights of the trees 
Semantic Name Similarity: 
The semantic name similarity is computed using a technique 
similar to the one in [4], in that, we parse the words to extract 
tokens and find ontological similarity in the tokens. The parsing 
uses tokenization, part-of-speech tagging, filtering and 
abbreviation expansion to generate list of candidate words. Thus 
CustomerPurchase  will be separated into Customer and Purchase. 
The tokenization uses font changes, underscores, spaces and other 
separating characters. Abbreviations such as CustPurch will be 
expanded into CustomerPurchase, CustomaryPurchase, etc, using 
a domain-dependent abbreviation expansion dictionary generated 
a priori. Filtering removes stop words and part-of-speech tagging 
classified words as nouns, adjectives, etc. The resulting words are 
then used to index an ontology (we use Wordnet Thesaurus[7]) to 
obtain a list of synonyms.  Let each pair of source and destination 
attributes (A,B) have m and n valid tokens and let Si and Sj be 
their expanded lists based on ontological processing. We consider 
each token i in source attribute A to match a token j in destination 
attribute B if i ε Si or j  ε Si. The candidate matches again form a 
small  bipartite graph in which each edge has flow of unit 1 (Note 
this graph is different from the API match graph described 
earlier). The maximum cardinality matching in this graph then 
denotes the best set of matching word tokens. The semantic name 
similarity measure is then given as 
Sem(A,B) = 2*MaxMatch(A,B)/(m + n)                     (4) 
The semantic similarity allows us to match attributes such as 
(state,province), (CustomerIdentification, ClientID), 
(CustomerClass, ClientCategory), etc.  
Th overall cost function for computing the edge cost is then 
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C(A,B)= α1  * L(A,B)+  2 * Sem(A,B) + α3 * Type(A,B) + α4 * 
Struct(A,B)                                                                    (5) 
The weights (α1,2,3,4) are chosen to be step functions with value 
= 1.0 until a lower threshold is reached. Thus α1=0.0 for L(A,B) < 
0.9 (since lexical similarity is a good indication of relationship for 
only high-scoring matches), and  α2 = 0.0 for Sem(A,B) < 0.67, 
α3 = 0.0 for Type(A,B) < 0.5, α4 = 0.0 for Struct(A,B) < 0.5. The 
thresholds were derived by computing the similarity per cue for 
the actual mapping indicated by programmers for integration of 
candidates services used for testing and taking their average value. 

3. RESULTS 
We tested the performance of semantic schema matching on 240 
distinct pairs of web services drawn from Crossworlds business 
object library. The business objects tend to have a larger number 
of member attributes (over 100), so that the algorithm 
performance could be gauged on large schemas. We then 
measured the performance by comparing to a manual match of the 
attributes of the respective schemas. The number of spurious 
(false positives) as well as missing matches (false negative), were 
noted in each pair-wise match.  
Table 1 illustrates the matching similarly, for a pair of ADTs 
depicted in Figure 1. Here a web service that provides a 
description of an inventory item is chained with a web service that 
retrieves vendor information associated with the inventory item.  
A match of InventoryType and StockType has been aided by 
semantic name matching, while abbreviation expansion has 
allowed match of InvLocationID to InventoryLocationID 
Representative performance for a sampling of web services is 
illustrated in Table 2. Overall, the system erred on the side of 
making false positives and was able to maintain a matching 
accuracy in the range of 75-85%. 
4. CONCLUSIONS 
In this paper, we have presented an approach to semantically  
match two API schemas to enable the chaining of their associated 
services. Building automation into this task enables scalable 
deployable solutions in the world of internet where the web 
services are being added at a rapid pace. 
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1. 10 15 8 1 2 9 81% 

2. 23 34 28 3 7 31 81.57% 

3. 67 73 29 5 9 34 79% 

4. 84 56 10 3 4 13 76.4% 
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 Figure 2: Illustration of semantic matching between A
web services exchanging business objects. 

 

S. 
No.  

Source attribute Matching 
destination 
attribute 

Matching 
Score 

1. OrganizationID OrgID 2.5 

2. InventoryLocation InvLocationID 3.0 

3. InventoryID InventoryID 4.0 

4. InventoryType StockType 3.0 

 

Table 1: Matches produced by semantic match for the p
ADTs shown in Figure 1. 

Table 2: Il
performance 
matching durin
services derived
objects. 
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