
Semantic API Matching for Automatic Service Composition
Doina Caragea Tanveer Syeda-Mahmood

Dept. of Computer Science IBM Almaden Research Center
 Iowa State University, Ames, Iowa 650 Harry Road, San Jose, CA 95120

ABSTRACT
In this paper, we address the problem of matching I/O
descriptions of services to enable their automatic service
composition. Specifically, we develop a method of semantic
schema matching and apply it to the API schemas constituting the
I/O descriptions of services. The algorithm assures an optimal
match of corresponding entities by obtaining a maximum
matching in a bi-partite graph formed from the attributes.

1. INTRODUCTION
With an increasing number of organizations putting their business
competencies as a collection of web services, it is conceivable that
other users could integrate them to create new value-added
services in ways that were not anticipated by their original
developers. The assembly of services currently requires
considerable manual intervention, including examination of the
API descriptions of services, and writing of specific code to chain
a sequences of services using attributes in the I/O descriptions of
services. Semantic schema matching used earlier for data schemas
[4,6] can also be applied to APIs allowing automatic orchestration
relieving the burden of programming by end users. It can also
enable automatic service composition when augmented with
service discovery techniques [1,3,5,8].
In this paper, we focus on the automatic matching of API
descriptions of services. This is a difficult problem, in general, as
the relationship between attributes may not be obvious from their
names, types and structural grouping of attributes. Furthermore, a
source attribute may be split across multiple destination attributes
& vice versa.

2. SEMANTIC SCHEMA MATCHING
We now formulate the problem of semantic match of the APIs of a
set of services. The source and target attributes can be regarded as
the nodes of a bi-partite graph. Their correspondence is then a
matching in the bipartite graph. If the weights on the edges of the
bipartite graph reflect the similarity of the attributes, the optimal
matching is a matching of maximum cardinality and maximum
weight. The semantic schema matching approach, therefore, is to
reflect the knowledge of API variables in determining similarity
of attributes and use a conventional maximum matching
algorithm. Specifically, we used the algorithm of Goldberg and
Kennedy[2]. In this algorithm, the matching is computed by
setting up a flow network with weights such that the maximum
flow corresponds to a maximum matching [2].

2.1 Computing Similarity between attributes
We derive the similarity between attributes using four sets of cues,
namely, (1) lexical name matching, (2) semantic name matching,
(3) type matching, and (4) structural matching. Due to space
limitations, we will expand on semantic similarity while briefly
describing other similarity metrics used. The lexical similarity
measure captures the similarity in the spelling of names used in
APIs (eg. lname, lastname) and is measured as

L(A,B) = 2 * Length(LCS(A,B))/(Length(A) + Length(B)) (1)
Where A,B are the attributes, and LCS(A,B) is longest common
subsequence of A and B.
Type matching:
For APIs the type of attributes is a strong cue in matching, for
without proper type casting, the service cannot be launched. The
type similarity measure is given by:
Type(A,B) = 1.0 (lossless conversion), = 0.5 (lossy), = 0
(otherwise) (2)
Where the lossless conversion is determined by navigating the
reference type hierarchy of a language (eg. int to float is lossless,
while float to int is lossy). The existence of an explicit type
casting function (eg. 2d array to 1d vector converter code) is also
a case of lossless conversion.
Structural matching:
Using the rationale that the grouping of attributes under a node of
a particular height in the API schema denotes a concept
abstraction used by programmers, the structural similarity is
measured by
Struct(A,B) = 1 - (|D(A) -D(B)|)/max{D(Gi), D(Gj)} (4)

where D(A) and D(B) are the height of the attributes in their
respective schema trees Gi and Gj and D(Gi) and D(Gj) are the
heights of the trees
Semantic Name Similarity:
The semantic name similarity is computed using a technique
similar to the one in [4], in that, we parse the words to extract
tokens and find ontological similarity in the tokens. The parsing
uses tokenization, part-of-speech tagging, filtering and
abbreviation expansion to generate list of candidate words. Thus
CustomerPurchase will be separated into Customer and Purchase.
The tokenization uses font changes, underscores, spaces and other
separating characters. Abbreviations such as CustPurch will be
expanded into CustomerPurchase, CustomaryPurchase, etc, using
a domain-dependent abbreviation expansion dictionary generated
a priori. Filtering removes stop words and part-of-speech tagging
classified words as nouns, adjectives, etc. The resulting words are
then used to index an ontology (we use Wordnet Thesaurus[7]) to
obtain a list of synonyms. Let each pair of source and destination
attributes (A,B) have m and n valid tokens and let Si and Sj be
their expanded lists based on ontological processing. We consider
each token i in source attribute A to match a token j in destination
attribute B if i ε Si or j ε Si. The candidate matches again form a
small bipartite graph in which each edge has flow of unit 1 (Note
this graph is different from the API match graph described
earlier). The maximum cardinality matching in this graph then
denotes the best set of matching word tokens. The semantic name
similarity measure is then given as
Sem(A,B) = 2*MaxMatch(A,B)/(m + n) (4)
The semantic similarity allows us to match attributes such as
(state,province), (CustomerIdentification, ClientID),
(CustomerClass, ClientCategory), etc.
Th overall cost function for computing the edge cost is then

436

C(A,B)= α1 * L(A,B)+ 2 * Sem(A,B) + α3 * Type(A,B) + α4 *
Struct(A,B) (5)
The weights (α1,2,3,4) are chosen to be step functions with value
= 1.0 until a lower threshold is reached. Thus α1=0.0 for L(A,B) <
0.9 (since lexical similarity is a good indication of relationship for
only high-scoring matches), and α2 = 0.0 for Sem(A,B) < 0.67,
α3 = 0.0 for Type(A,B) < 0.5, α4 = 0.0 for Struct(A,B) < 0.5. The
thresholds were derived by computing the similarity per cue for
the actual mapping indicated by programmers for integration of
candidates services used for testing and taking their average value.

3. RESULTS
We tested the performance of semantic schema matching on 240
distinct pairs of web services drawn from Crossworlds business
object library. The business objects tend to have a larger number
of member attributes (over 100), so that the algorithm
performance could be gauged on large schemas. We then
measured the performance by comparing to a manual match of the
attributes of the respective schemas. The number of spurious
(false positives) as well as missing matches (false negative), were
noted in each pair-wise match.
Table 1 illustrates the matching similarly, for a pair of ADTs
depicted in Figure 1. Here a web service that provides a
description of an inventory item is chained with a web service that
retrieves vendor information associated with the inventory item.
A match of InventoryType and StockType has been aided by
semantic name matching, while abbreviation expansion has
allowed match of InvLocationID to InventoryLocationID
Representative performance for a sampling of web services is
illustrated in Table 2. Overall, the system erred on the side of
making false positives and was able to maintain a matching
accuracy in the range of 75-85%.
4. CONCLUSIONS
In this paper, we have presented an approach to semantically
match two API schemas to enable the chaining of their associated
services. Building automation into this task enables scalable
deployable solutions in the world of internet where the web
services are being added at a rapid pace.

4. REFERENCES
[1] T. Berners-Lee et al. The semantic web. Scientific
American, 2001.
[2] A. Goldberg and Kennedy. An efficient cost-scaling
algorithm for the assignment problem. SIAM Journal on
Discrete Mathematics, 6(3):443{459, 1993.
[3] J. Blythe et al. The role of planning in grid computing.
In Proc. ICAPS, 2003.
[4] J. Madhavan, P. A. Bernstein, and E. Rahm. Generic
schema matching with cupid. In The VLDB Journal, pages
49-58, 2001.
[5] D. McDermott. Estimated regression planning for
interactions with web services. In Proc. AIPS, 2002.

S.No Source
ttributes

Destination
attributes

Correctly
matched

Missed
matches

Spurious
matches

Actual
matces

%
Accuracy

1. 10 15 8 1 2 9 81%

2. 23 34 28 3 7 31 81.57%

3. 67 73 29 5 9 34 79%

4. 84 56 10 3 4 13 76.4%

[6] S. Melnik et al. Similarity flooding: A versatile graph
matching algorithm and its application to schema matching. In
Proc. ICDE, 2002
[7] G.A. Miller. Wordnet: A lexical database for English.
Communications of the ACM, 38(11):39{41, 1995.
[8] Evren Sirin, James Hendler, and Bijan Parsia. Semi automatic
composition of web services using semantic descriptions.

)

 Figure 2: Illustration of semantic matching between A
web services exchanging business objects.

S.
No.

Source attribute Matching
destination
attribute

Matching
Score

1. OrganizationID OrgID 2.5

2. InventoryLocation InvLocationID 3.0

3. InventoryID InventoryID 4.0

4. InventoryType StockType 3.0

Table 1: Matches produced by semantic match for the p
ADTs shown in Figure 1.

Table 2: Il
performance
matching durin
services derived
objects.

437
(a
PIs for

Contributi
order

0.67,1.0,1

0.74,0.67,

1.0,1.0,1.0

0.56,1.0,1
air of serv

lustration
of sem
g chainin
 from bus
(b)
ons in

.0, 0.50

1.0,1.0

, 1.0

.0, 1.0
ices

 of
antic
g of
iness

	INTRODUCTION
	SEMANTIC SCHEMA MATCHING
	Computing Similarity between attributes

	RESULTS
	S. No.
	Source attribute
	Matching destination attribute
	Matching Score
	Contributions in order
	1.
	OrganizationID
	OrgID
	2.5
	0.67,1.0,1.0, 0.50
	2.
	InventoryLocation
	InvLocationID
	3.0
	0.74,0.67,1.0,1.0
	3.
	InventoryID
	InventoryID
	4.0
	1.0,1.0,1.0, 1.0
	4.
	InventoryType
	StockType
	3.0
	0.56,1.0,1.0, 1.0
	REFERENCES

