

Automatic Extraction of Web Search Interfaces
for Interface Schema Integration

Hai He, Weiyi Meng
Dept. of Computer Science

SUNY at Binghamton
Binghamton, NY 13902

{haihe, meng}@cs.binghamton.edu

Clement Yu
Dept. of Computer Science
Univ. of Illinois at Chicago

Chicago, IL 60607
yu@cs.uic.edu

Zonghuan Wu
Center for Adv. Compu. Studies
Univ. of Louisiana at Lafayette

Lafayette, LA 70504
zwu@cacs.louisiana.edu

ABSTRACT
This paper provides an overview of a technique for extracting
information from the Web search interfaces of e-commerce search
engines that is useful for supporting automatic search interface
integration. In particular, we discuss how to group elements and
labels on a search interface into attributes and how to derive
certain meta-information for each attribute.

Categories & Subject Descriptors
H.3.5 [Information Storage and Retrieval]: Online Information
Services – Commercial Services, Web-based Services. H.5.2
[Information Interface and Representation]: User Interfaces –
User Interface Management Systems.

General Terms
Algorithms, Management, Performance, Design.

Keywords
Search interface representation, Search interface extraction,
Search engine, Metasearch engine.

1. INTRODUCTION
This paper provides an overview of a technique for extracting
information from the Web search interfaces of e-commerce search
engines (ESEs) that is useful for constructing e-commerce
metasearch engines (EMSEs). More specifically, the aim is to
extract information that supports automatic search interface
integration. In [1], we presented a model to capture the
information on a search interface and a tool (WISE-Integrator)
that can automatically build a unified search interface over
multiple heterogeneous ESE search interfaces of the same product
domain based on the model. However, in [1], the information in
the model was manually obtained from each search interface. In
this paper, we outline our technique for automatically
constructing the model.
 A Web search interface for e-commerce typically contains
some HTML form control elements such as textbox (i.e., a single-
line text input), radio button, checkbox and selection list (i.e., a
pull-down menu) that allow a user to enter search information.
Each element usually has a label – a descriptive text – associated
with it. An element may have one or more values. For example, a
selection list usually has a list of values (options) for users to
select, and a radio button/checkbox usually has a single value.
Logically, elements and their associated labels together form
different attributes of the products in the underlying database of
the search engine. Often an attribute may consist of one or more
labels and elements. For example, the author attribute in Figure 1

has four elements including a textbox and three radio buttons. The
label of an attribute is referred to as attribute name, and
element(s) of the attribute are treated as attribute domain. If an
attribute contains multiple elements, these elements may be
related in some way. For example, among the four elements of
author in Figure 1, the textbox is treated as domain element
while the three radio buttons are treated as constraint elements
since each of them specifies a constraint on the domain element.
In addition to such explicit composition information of attributes,
each attribute is also implicitly associated with a set of meta-
information such as the domain type (e.g., finite, range) and value
type (e.g., date, currency), which is essential for enhancing
attribute matching [1].

 Figure 1. The book search interface of amazon.com.

2. INTERFACE EXTRACTION
In our work, interface extraction consists of two major steps: (1)
Attribute extraction: given all search interfaces of a domain,
extract labels and elements appearing in each form and then group
them into logic attributes; (2) Attribute analysis: analyze the
labels and elements of each attribute to derive meta-information
of the attribute such as domain type and value type.

2.1 Attribute Extraction
We observe that labels and elements of the same attribute have a
certain layout and are usually close to each other, and that in most
cases they share some similar information. The layout of labels
and elements can be captured as an interface expression(IEXP).
For a given search interface, its IEXP is a string consisting of
three basic items ‘t’, ‘e’ and ‘|’, where ‘t’ denotes a label/text, ‘e’
denotes an element, and ‘|’ denotes a row delimiter which
represents a physical row border in the search interface. IEXP
provides a high-level description of the layout of different labels
and elements on the interface while ignoring the details like the
values of the elements and the actual implementations of laying
out labels and elements. For example, the IEXP of the search

Copyright is held by the author/owner(s).
WWW 2004, May 17–22, 2004, New York, New York, USA.
ACM 1-58113-912-8/04/0005.

414

interface in Figure 1 is “te|eee|te|eee|te|eee|te|te|t|te|te|te|te|tee|t|te”,
where the first ‘t’ denotes the label “author”, the first ‘e’ denotes
the textbox following the label “author”, the first ‘|’ is the first
row delimiter, the following three ‘e’s denote the three radio
buttons below the textbox (the text on a radio button or checkbox
is treated as the value of the element, thus the text and its radio
button/checkbox together are a whole entity).

We employ a two-step approach to perform automatic
extraction of attributes. In the first step, the IEXP of a given
interface is constructed. Starting from HTML tag “<form>” of the
search engine form, when a label or an element or a row delimiter
is encountered, we append a ‘t’ or ‘e’ or ‘|’ to the IEXP (initially it
is empty) accordingly. The delimiter is identified by “<p>”,
“
” and “<tr>” tags in the HTML source code. This process
continues until tag “</form>” is reached. The IEXP organizes
labels and elements into multiple rows. In the second step, based
on the IEXP, labels and elements are grouped such that each
group corresponds to a separate attribute. For each element e in a
row, we need to find the text either in the same row or some rows
above the current row that is most likely to be the attribute label
for e. To this end, some special features of search forms are
applied such as: (a) texts ending with a colon are likely to be
attribute labels; (b) an element is likely to appear close to its
attribute label.

2.2 Attribute Analysis
When attributes are extracted, attribute analysis is to analyze each
attribute to derive its meta-information. In our interface
representation, four types of meta-information for each attribute
are defined and they are domain type, value type, default value
and unit. Deriving meta-information is fairly straightforward. In
the following, we sketch how to automatically extract each type of
meta-information.

Domain type: Four attribute domain types are defined: range,
finite, infinite, and Boolean. The domain type of an attribute can
be derived from its label(s) and associated element(s). If an
attribute has element(s) with range semantics such as “between-
and” and “less than” patterns, its domain type is range. If it has a
list of pre-defined values for users to select and they have no
range semantics, its domain is of finite type. If it has just a single
checkbox, the attribute is considered to have a Boolean domain
type. An attribute with infinite domain type usually consists of
textbox(es) with no range semantics.

Value type: Value types defined in our model include date,
time, datetime, currency, id, number and char. To identify date,
time, datetime, currency and id, we provide a thesaurus for each
type, which just contains domain independent information such as
keywords and patterns. If the labels and element values contain
relevant keywords and patterns, the attribute’s value type is
determined. A pattern can be defined by a regular expression. For
example, keywords “date” or regular pattern “[0-1]?[0-9]/[0-
3]?[0-9]/([0-9]{2}|[0-9]{4})” imply a date value type. If an
attribute does not belong to one of these five value types, then the
value type is declared to be number if the values of each element
are numeric; otherwise the value type is char.

Default value: Not all attributes have its default value. If an
attribute just contains textboxes, then the attribute has no default
value. The default value may occur in a selection list, a group of
radio buttons/checkboxes. It is always marked as “checked” or
“selected” in the HTML source code of forms.

Unit: The unit defines the meaning of an attribute value (e.g.,
kilogram is a unit for weight). To identify the unit of an attribute,
we construct a unit library that contains the most popular units in
e-commerce sites, such as “currency”, “weight”, “age” and “date”.

From the labels and values of an attribute, we may get some
information about its unit. Then we use the information and the
library to derive the appropriate unit for the attribute. For
example, if a label containing “US$” implies that the unit is
“USD”; “age” implies that the unit is “year”.
 If an attribute has multiple domain elements, we also identify
their relationship and their semantics. In our model, three types of
relationships for multiple domain elements are defined and they
are group, range and part. If an attribute contains just multiple
checkboxes/radio buttons, the group type is recognized for these
elements. Since range is a special type of part, we consider range
type first. A range domain type implies that the elements are of
range related. Then the elements that are not of range type would
be treated as part type by default.

2.3 Experimental Results
We evaluated our interface extraction technique using 184 search
interfaces from 7 application domains. Grouping extracted labels
and elements into separate attributes is the most complex problem
in the interface extraction. In this task, we need to group the labels
and elements that conceptually represent the same concept into a
single attribute. Meanwhile, an attribute label should be identified
for each attribute. To evaluate our method, we manually identified
the attributes of each search interface, and then manually compare
them with the results of our method. We evaluate the accuracy in
two levels of granularity: element level and attribute level.
Element level: A label is correctly extracted for an element if it
matches the manually identified label. This criterion is also used
in [3] to evaluate the LITE method for label extraction. The
overall accuracy of our method based on 1582 elements from 184
forms is 97.66%.
Attribute level: An attribute consists of up to three aspects of
information: the name/label of the attribute, the set of domain
elements and the set of constraint elements. An extracted attribute
matches a manually extracted attribute if they match on all three
aspects. No results on attribute-level accuracy were reported in
[3]. The overall attribute-level accuracy of our method is 95.61%.
 Our approach also has good accuracy in obtaining meta-
information of extracted attributes, such as domain type, value
type, unit, default value and the relationships of elements. The
average accuracy of our method for each of the above category of
meta-information is above 97%.

3. RELATED WORK
The works reported in [2, 3] are the most relevant to our work.
Our approach is different from the above works in many ways and
the major difference is that our approach is attribute-oriented (i.e.,
labels and elements are grouped into attributes), more
comprehensive, and more suitable for search interface integration.

4. ACKNOWLEDGEMENT
This work is supported in part by the following grants from NSF:
IIS-0208574 and IIS-0208434.
5. REFERENCES
[1] H. He, W. Meng, C. Yu, and Z. Wu. WISE-Integrator: An

Automatic Integrator of Web Search Interfaces for E-
commerce. VLDB Conference, Berlin, 2003.

[2] O. Kaljuvee, O. Buyukkokten, H. Garcia-Molina, and A.
Paepcke. Efficient Web Form Entry on PDAs. 10th WWW
Conference, 2000.

[3] S. Raghavan and H. Garcia-Molina. Crawling the Hidden
Web. VLDB Conference, Italy, 2001.

415

