

On Mining Webclick Streams for Path Traversal Patterns
Hua-Fu Li

Department of Computer Science and
Information Engineering

National Chiao-Tung University
No. 1001 Da-Shieh Rd., Hsinchu 300,

Taiwan, R.O.C.
hfli@csie.nctu.edu.tw

Suh-Yin Lee
Department of Computer Science and

Information Engineering
National Chiao-Tung University

No. 1001 Da-Shieh Rd., Hsinchu 300,
Taiwan, R.O.C.

sylee@csie.nctu.edu.tw

Man-Kwan Shan
Department of Computer Science

National Cheng-Chi University
No. 64, Sec. 2, Zhi-Nan Rd., Wenshan,

Taipei 116, Taiwan, R.O.C.

mkshan@cs.nccu.edu.tw

ABSTRACT
Mining user access patterns from a continuous stream of Web-clicks
presents new challenges over traditional Web usage mining in a large
static Web-click database. Modeling user access patterns as maximal
forward references, we present a single-pass algorithm StreamPath
for online discovering frequent path traversal patterns from an
extended prefix tree-based data structure which stores the compressed
and essential information about user’s moving histories in the stream.
Theoretical analysis and performance evaluation show that the space
requirement of StreamPath is limited to a logarithmic boundary, and
the execution time, compared with previous multiple-pass algorithms
[2], is fast.

Categories and Subject Descriptors
H.2.8 [Database Management]: Databases Applications – data
mining.

General Terms
Algorithms, Performance.

Keywords
Web-click streams, data stream mining, path traversal patterns

1. INTRODUCTION
Recently, database and data mining communities have focus on a new
data model, where data arrives in the form of continuous streams [1].
In the streaming data model, data does not take the form of persistent
relations, but arrives sequentially (implicitly by arrival time or
explicitly by timestamp), and is processed by an online algorithm
whose workspace is insufficient to store all the data, so the main
challenges of mining such streaming data (usually called stream data
mining) is constrained by limited resources of memory, processing
time, and the total number of streaming data scan. Applications
include financial tickers, Web-log and click streams in Web
applications, data feeds from sensor network, call detail records in
telecommunications, online transactions in retail chains, etc. In this
paper, we consider one of most important applications of data stream
mining, namely, cost-efficient mining path traversal patterns over
Web-click stream.

The problem of mining path traversal patterns in a large static
Web-click dataset was proposed by Chen et al. [2] for Web usage
mining. In this paper, we extend the problem of path traversal pattern
into a streaming problem. The problem can be modified as follows.
Let S be a continuous stream of Web-clicks, where a Web-click Wc
consists of an identifier UserID of the Web user and a Web-page
reference r accessed by the user, i.e., Wc = (UserID, r). In such
streaming environment, a segment of Web-click stream arrived at
timestamp ti can be divided into a set of Web-click sequences. For
example, a fragment of stream S = [(100, A)(100, B)(200, A)(300,

B)(200, B)(200, C)(300, C)(100, D)(200, A)(200, E)]ti, arrived at
timestamp ti, can be classified into three Web-click sequences: {100,
(A)(B)(D)}, {200, (A)(B)(C)(A)(E)}, and {300, (B)(C)}, where 100,
200, and 300 are the identifiers of Web users, and A, B, C, D, and E
are references accessed by these users. For convenience, in the sequel,
we drop the identifier of user, and denote a sequence of references
{(A)(B)(D)} as {ABD}. A Web-click sequence Wcs = <r1, r2, …, rk>
consists of a sequence of forward references and backward references
accessed by a Web user. A backward reference means revisiting a
previously visited page by the same user access. A maximal forward
reference MFR is a forward reference path without any backward
references. Hence, we can convert a Web-click sequence into several
maximal forward references, i.e., Wcs = MFR1, MFR2, …, MFRi,
where i ≥ 1. For instance, a Web-click sequence {ABCAE} consists of
two maximal forward references, namely, <ABC> and <AE>.
Therefore, we can map the problem of finding frequent path traversal
patterns into the one of finding frequent occurring consecutive
sequences (called reference sequences) among all maximal forward
references. The support of a reference sequence Rs, denoted by
Sup(Rs), is the number of maximal forward references containing Rs
divided by the total maximal forward references in S at timestamp ti.
A reference sequence Rs is called a frequent traversal pattern if
Sup(Rs) ≥ MinSup, where MinSup is a minimum support threshold
specified by the user. Consequently, the problem can be defined as
follows. Given a minimum support threshold MinSup and a
continuous stream of Web-clicks S, the problem of mining Web-click
streams for path traversal patterns is to discover the set of all
frequent traversal patterns with respect to the characteristics of
Web-click streams.

The objective of this paper is to mine the set of all frequent
traversal patterns over a Web-click stream by one-scan the stream
with limited memory usage and fast response time. Our algorithm
StreamPath has all of these characteristics, while none of previously
published methods can claim the same.

2. ONLINE ALGORITHM
2.1 Pattern-Growth Mining
The framework of StreamPath is derived from the well-known
pattern-growth algorithm called FP-growth proposed by Han et al. [3]
for mining static databases, which is a divide-and-conquer method,
and it can be divided into three phases. First, FP-growth scans the
database to find all frequent items, and constructs a Header-Table to
record the summary information of these frequent items. Second, FP-
growth makes the second database scan to construct a conditional
frequent-pattern tree (FP-tree for short), which is an extended prefix-
tree structure for compressing the size of the original database. Third,
FP-growth uses a recursive search scheme to generate all frequent
itemsets from the FP-tree. More details about the FP-growth method
can be found in [3].

There are following problems in developing a pattern-growth based
algorithm for mining Web-click streams:

1. It requires scanning the database twice, i.e., one for Header-
Table construction, and another for FP-tree construction.

Copyright is held by the author/owner(s).
WWW 2004, May 17–22, 2004, New York, New York, USA.
ACM 1-58113-912-8/04/0005.

404

B:1 E:2 O:1 G:1F:1C:2A:2

A:2

B:1

C:1

E:1

F:1

O:1

G:1

B:1

C:1

E:1

F:1

O:1

C:2

E:2

F:1

O:1

E:2

F:1

O:1

F:1

O:1

O:1 G:1

Border

C:1

E:1

G:1

G:1

B:1 E:3 O:1 D:1G:2F:1C:3A:2

A:2

B:1

C:1

E:1

F:1

O:1

G:1

B:1

C:1

E:1

F:1

O:1

C:3

E:2

F:1

O:1

E:3

F:1

O:1

F:1

O:1

O:1 G:2

C:1

E:1

G:1

G:2D:1

E:1

G:1

D:1

E:1

G:1

E:2 G:1C:2A:1

A:2

C:1

E:1 G:1

C:3

E:2

E:3 G:2

der

C:1

E:1

G:1

G:2

E:1

G:1

C:2 G:1E:2A:1

A:2

G:3

C:3

E:3

E:3 G:2

rder

C:2

E:2

G:1

G:2

2. The upper bound of the FP-tree’s memory usage is probably

undetermined in such streaming environment.
These challenges show that static pattern-growth method can not

appropriately meet the main performance requirements of mining
Web-click streams. Hence, in this paper, we propose a modified
pattern-growth framework, called stream-efficient pattern-growth, to
satisfy the major performance requirements, namely, single-pass,
bounded memory, and real-time, of data stream mining.

2.2 Stream-Efficient Pattern-Growth Mining
Algorithm StreamPath has two major features, namely online
dynamic maintaining StreamHT (Streaming Header-Table), and
efficient constructing a StreamFP-tree (Streaming Frequent-Pattern
tree) in a continuous stream of Web-clicks.

To illustrate these features of StreamPath, we will use the
following example as a running example. Consider a fragment of
example online Web-click stream S arrived at timestamp t; that is,
S=[(100, A)(100, B)(200, C)(300, C)(100, C)(200, D)(100, E)(100,
F)(200, E)(300, D)(100, O)(200, D)(100, A)(100, C)(300, F)(100,
E)(200, G)(100, G)]t. After a hashing function of each individual Web
user, and the transform function of maximal forward references, we
can obtain three Web-click sequences, namely, {ABCEFOACEG},
{CDEG}, and {CDF}, and four maximal forward references, i.e.,
<ABCEFO>, <ACEG>, <CDEG>, and <CDF>, where each capital
letter indicates a Web-page reference, and we assume that the
StreamHT contains at most seven frequent items, which is constrained
by 1/MinSup. More details about maintaining frequent items over a
streaming data can be found in [4]. After processing the first two
maximal forward references in this stream, a StreamFP-tree and the
StreamHT were constructed, as shown in Figure 1 (a). In Figure 1 (b),
the StreamHT was broken (since the number of frequent items is
greater than the maximal size of StreamHT, i.e., 8 > 7), while
StreamPath reads in the third maximal forward reference {CDEG}.
The nodes bounded by the dotted boxes were removed from the
StreamFP-tree and reconstructs the StreamFP-tree and the StreamHT,
as shown in Figure 1 (c) and Figure 1 (d), respectively. At this time, if
a user query wants to output the current set of frequent traversal
patterns, then StreamPath traverses the StreamFP-tree, as shown in
Figure 1 (d), in depth first search (DFS) manner and generates a
temporal list which containing the set of current (maximal) frequent
traversal pattern ACE and CEG. From this running example, we can
see that StreamPath has all of these characteristics, namely, single-
scan, limited memory and real-time, in a streaming environment.

3. MEMORY ANALYSIS AND EXPERIMENTS
Let the StreamHT contains k items at any time. Therefore, we know
there are at most C  

k
k 2/ frequent reference sequences in the current

Web-click stream seen so far. If we construct a StreamFP-tree for all
these frequent traversal patterns, the tree has height k/2. In the first

(a) (b)

Figure 1. (a) StreamFP-tree after the first two maximal forward referenc
StreamHT pruning, (d) Current status of StreamFP-tree after the first

4

der
e

Memory-
StreamFP-tree
Memory-Bor
StreamFP-tre
level, there are C 

nodes, in the i-th le

the k/2 level, ther

is C   12/
1

+k + C   22/
2

+k +

The space requi
working space nee
needed for the Strea
space for StreamHT

  
∑ ∑
= =

+K

j

j

i

ij
iC

1

2/

1

2/ nodes

bound of O(k+


∑ ∑
= =

K

j

j

i1

2/

1

Dude to lack of
StreamPath and th
synthetic datasets s
outperforms FS and
does better than FS
StreamPath. Secon

4. CONCLUS
The problem of mi
traditional data min
this paper we prese
patterns over Web-
StreamPath is a fir
satisfying the key
memory usage, and

ACKNOWLE
The authors thank
suggestions with si
work was supported
grant no. NSC92-22

REFERENCE
[1] Babcock, B., Ba

and Issues in
Symposium on P

[2] Chen, M.-S., Pa
Traversal Patte
Engineering (TK

[3] Han, J., Pei, J.,
Candidate Gener
and Knowledge D

[4] Karp, R., Shenk
Finding Frequen
Database System

 (c

es, (b) StreamFP-tree reco
 three maximal forward re

05
Memory-BorStreamFP-tree
 12/
1

+k nodes, in the second level

vel, there are C   ik
i

+2/ nodes, an

e are C  
k

k 2/ nodes. Thus, the tot

 C   ik
i

+2/ +…+ C  
k

k 2/ =
 
∑
=

2/

1

k

i
C k

i
2/

rement of StreamPath consists
ded to create a StreamHT, and
mFP-tree construction. In wors
 requires k entries. For storage

of the StreamFP-tree. Thus, this

  +ij
iC 2/).

 space, we only summarize t
e algorithms, FS and SS, prop
ame as [2]. On the synthetic da
 SS. There are two main reason
 and SS. First, there is no cand
d, StreamPath needs only one st

IONS
ning data streams is much mor
ing due to the characteristics of
nt an efficient algorithm for mi
click streams. Based on our kn
st efficient approach for Web-c
properties of one streaming

 fast processing time for each st

DGEMENTS
 the reviewers for their valua
gnificantly improve the quality
 by the National Science Coun
13-E009-123.

S
bu, S., Datar, M., Motwani, R., an
Data Stream Systems. In Proc.
rinciples of Database Systems, 200
rk, J.-S., and Yu, P. S. Efficient D
rns, IEEE Transactions on Kn
DE), 10(2):209-221, 1998.
Yin, Y., and Mao, R. Mining Freq
ation: A Frequent-pattern Tree Ap
iscovery: An International Journa

er, S., and Papadimitriou, C. A S
t Elements in Streams and Bags. A
s (TODS), 28(1):51-55, 2003.

)

nstruction, (c) StreamFP-tree mai
ferences {ABCEFO}, {ACEG}, an
Memory-Bo
StreamFP-tree
StreamHT
 StreamHT
 StreamHT
 StreamHT

, there are C   22/
2

+k

d in the last level,

al number of nodes

 i+ □

 of two parts: the
 the storage space
t case, the working
, there are at most

 gives a total space

he comparisons of
osed in [2], using
tasets, StreamPath
s why StreamPath
idate generation in
reaming data scan.

e complicated than
 streaming data. In
ning path traversal
owledge, algorithm
lick stream mining
data scan, limited
reaming Web click.

ble comments and
 of this paper. The
cil of R.O.C. under

d Widom, J. Models
 of the 2002 ACM
2.
ata Mining for Path

owledge and Data

uent Patterns without
proach. Data Mining
l, 8(1):53-87, 2004.
imple Algorithm for
CM Transactions on

 (d)

ntenance using
d {CDEG}.

