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ABSTRACT 
Mining user access patterns from a continuous stream of Web-clicks 
presents new challenges over traditional Web usage mining in a large 
static Web-click database. Modeling user access patterns as maximal 
forward references, we present a single-pass algorithm StreamPath 
for online discovering frequent path traversal patterns from an 
extended prefix tree-based data structure which stores the compressed 
and essential information about user’s moving histories in the stream. 
Theoretical analysis and performance evaluation show that the space 
requirement of StreamPath is limited to a logarithmic boundary, and 
the execution time, compared with previous multiple-pass algorithms 
[2], is fast. 

Categories and Subject Descriptors 
H.2.8 [Database Management]: Databases Applications – data 
mining.  

General Terms 
Algorithms, Performance. 

Keywords 
Web-click streams, data stream mining, path traversal patterns 

1. INTRODUCTION 
Recently, database and data mining communities have focus on a new 
data model, where data arrives in the form of continuous streams [1]. 
In the streaming data model, data does not take the form of persistent 
relations, but arrives sequentially (implicitly by arrival time or 
explicitly by timestamp), and is processed by an online algorithm 
whose workspace is insufficient to store all the data, so the main 
challenges of mining such streaming data (usually called stream data 
mining) is constrained by limited resources of memory, processing 
time, and the total number of streaming data scan. Applications 
include financial tickers, Web-log and click streams in Web 
applications, data feeds from sensor network, call detail records in 
telecommunications, online transactions in retail chains, etc. In this 
paper, we consider one of most important applications of data stream 
mining, namely, cost-efficient mining path traversal patterns over 
Web-click stream.     

The problem of mining path traversal patterns in a large static 
Web-click dataset was proposed by Chen et al. [2] for Web usage 
mining. In this paper, we extend the problem of path traversal pattern 
into a streaming problem. The problem can be modified as follows. 
Let S be a continuous stream of Web-clicks, where a Web-click Wc 
consists of an identifier UserID of the Web user and a Web-page 
reference r accessed by the user, i.e., Wc = (UserID, r). In such 
streaming environment, a segment of Web-click stream arrived at 
timestamp ti can be divided into a set of Web-click sequences. For 
example, a fragment of stream S = [(100, A)(100, B)(200, A)(300, 

B)(200, B)(200, C)(300, C)(100, D)(200, A)(200, E)]ti, arrived at 
timestamp ti, can be classified into three Web-click sequences: {100, 
(A)(B)(D)}, {200, (A)(B)(C)(A)(E)}, and {300, (B)(C)}, where 100, 
200, and 300 are the identifiers of Web users, and A, B, C, D, and E 
are references accessed by these users. For convenience, in the sequel, 
we drop the identifier of user, and denote a sequence of references 
{(A)(B)(D)} as {ABD}. A Web-click sequence Wcs = <r1, r2, …, rk> 
consists of a sequence of forward references and backward references 
accessed by a Web user. A backward reference means revisiting a 
previously visited page by the same user access. A maximal forward 
reference MFR is a forward reference path without any backward 
references. Hence, we can convert a Web-click sequence into several 
maximal forward references, i.e., Wcs = MFR1, MFR2, …, MFRi, 
where i ≥ 1. For instance, a Web-click sequence {ABCAE} consists of 
two maximal forward references, namely, <ABC> and <AE>. 
Therefore, we can map the problem of finding frequent path traversal 
patterns into the one of finding frequent occurring consecutive 
sequences (called reference sequences) among all maximal forward 
references. The support of a reference sequence Rs, denoted by 
Sup(Rs), is the number of maximal forward references containing Rs 
divided by the total maximal forward references in S at timestamp ti. 
A reference sequence Rs is called a frequent traversal pattern if 
Sup(Rs) ≥ MinSup, where MinSup is a minimum support threshold 
specified by the user. Consequently, the problem can be defined as 
follows. Given a minimum support threshold MinSup and a 
continuous stream of Web-clicks S, the problem of mining Web-click 
streams for path traversal patterns is to discover the set of all 
frequent traversal patterns with respect to the characteristics of 
Web-click streams.   

The objective of this paper is to mine the set of all frequent 
traversal patterns over a Web-click stream by one-scan the stream 
with limited memory usage and fast response time. Our algorithm 
StreamPath has all of these characteristics, while none of previously 
published methods can claim the same. 

2. ONLINE ALGORITHM 
2.1 Pattern-Growth Mining 
The framework of StreamPath is derived from the well-known 
pattern-growth algorithm called FP-growth proposed by Han et al. [3] 
for mining static databases, which is a divide-and-conquer method, 
and it can be divided into three phases. First, FP-growth scans the 
database to find all frequent items, and constructs a Header-Table to 
record the summary information of these frequent items. Second, FP-
growth makes the second database scan to construct a conditional 
frequent-pattern tree (FP-tree for short), which is an extended prefix-
tree structure for compressing the size of the original database. Third, 
FP-growth uses a recursive search scheme to generate all frequent 
itemsets from the FP-tree. More details about the FP-growth method 
can be found in [3]. 

There are following problems in developing a pattern-growth based 
algorithm for mining Web-click streams: 

1. It requires scanning the database twice, i.e., one for Header-
Table construction, and another for FP-tree construction. 
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2. The upper bound of the FP-tree’s memory usage is probably 

undetermined in such streaming environment. 
These challenges show that static pattern-growth method can not 

appropriately meet the main performance requirements of mining 
Web-click streams. Hence, in this paper, we propose a modified 
pattern-growth framework, called stream-efficient pattern-growth, to 
satisfy the major performance requirements, namely, single-pass, 
bounded memory, and real-time, of data stream mining. 

2.2 Stream-Efficient Pattern-Growth Mining 
Algorithm StreamPath has two major features, namely online 
dynamic maintaining StreamHT (Streaming Header-Table), and 
efficient constructing a StreamFP-tree (Streaming Frequent-Pattern 
tree) in a continuous stream of Web-clicks.  

To illustrate these features of StreamPath, we will use the 
following example as a running example. Consider a fragment of 
example online Web-click stream S arrived at timestamp t; that is, 
S=[(100, A)(100, B)(200, C)(300, C)(100, C)(200, D)(100, E)(100, 
F)(200, E)(300, D)(100, O)(200, D)(100, A)(100, C)(300, F)(100, 
E)(200, G)(100, G)]t. After a hashing function of each individual Web 
user, and the transform function of maximal forward references, we 
can obtain three Web-click sequences, namely, {ABCEFOACEG}, 
{CDEG}, and {CDF}, and four maximal forward references, i.e., 
<ABCEFO>, <ACEG>, <CDEG>, and <CDF>, where each capital 
letter indicates a Web-page reference, and we assume that the 
StreamHT contains at most seven frequent items, which is constrained 
by 1/MinSup. More details about maintaining frequent items over a 
streaming data can be found in [4]. After processing the first two 
maximal forward references in this stream, a StreamFP-tree and the 
StreamHT were constructed, as shown in Figure 1 (a). In Figure 1 (b), 
the StreamHT was broken (since the number of frequent items is 
greater than the maximal size of StreamHT, i.e., 8 > 7), while 
StreamPath reads in the third maximal forward reference {CDEG}. 
The nodes bounded by the dotted boxes were removed from the 
StreamFP-tree and reconstructs the StreamFP-tree and the StreamHT, 
as shown in Figure 1 (c) and Figure 1 (d), respectively. At this time, if 
a user query wants to output the current set of frequent traversal 
patterns, then StreamPath traverses the StreamFP-tree, as shown in 
Figure 1 (d), in depth first search (DFS) manner and generates a 
temporal list which containing the set of current (maximal) frequent 
traversal pattern ACE and CEG. From this running example, we can 
see that StreamPath has all of these characteristics, namely, single-
scan, limited memory and real-time, in a streaming environment. 

3. MEMORY ANALYSIS AND EXPERIMENTS  
Let the StreamHT contains k items at any time. Therefore, we know 
there are at most C  

k
k 2/  frequent reference sequences in the current 

Web-click stream seen so far. If we construct a StreamFP-tree for all 
these frequent traversal patterns, the tree has height k/2. In the first 

(a)                                                         (b)               

Figure 1. (a) StreamFP-tree after the first two maximal forward referenc
StreamHT pruning, (d) Current status of StreamFP-tree after the first
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