
A Storage and Indexing Framework for P2P Systems

Adina Crainiceanu Prakash Linga Ashwin Machanavajjhala
Johannes Gehrke Jayavel Shanmugasundaram

Cornell University, Department of Computer Science
{adina,linga,mvnak,johannes,jai}@cs.cornell.edu

ABSTRACT
We present a modularized storage and indexing framework
that cleanly separates the functional components of a P2P
system, enabling us to tailor the P2P infrastructure to the
specific needs of various Internet applications.

Categories and Subject Descriptors
H.2.4 [Database management]: Systems—distributed databases

General Terms
Design

Keywords
peer-to-peer, p2p, indexing framework

1. INTRODUCTION
On the Internet, there are many applications that bene-

fit from the cooperation between peers. These applications
range from simple file-sharing to robust Internet-based stor-
age management to digital library applications. Each of
these applications imposes different requirements on the un-
derlying peer-to-peer (P2P) infrastructure. For example,
file-sharing applications need equality and keyword search
capabilities, but do not need sophisticated fault-tolerance.
On the other hand, storage management requires only sim-
ple querying, but requires robust fault-tolerance. Digital
library applications require both complex queries, including
equality, keyword search, and range queries, and sophisti-
cated fault-tolerance. Other applications, such as service
discovery on the Grid, impose their own specific require-
ments on the underlying P2P infrastructure.

One solution to this problem is to devise a special-purpose
P2P infrastructure for each application. Clearly, this is quite
wasteful, and does not leverage the common capabilities re-
quired across many applications. We propose a modular-
ized P2P system architecture that cleanly separates different
functional components, and allows us to reuse existing algo-
rithms and tailor the system to the needs of the application.
Here, we focus on the storage management and indexing
aspects of the architecture, with the following components:

1. Fault Tolerant Torus: Provides fault-tolerant connec-
tivity among peers.

2. Data Store: Stores actual data items and provides
methods for reliably exchanging items between peers.

3. Replication Manager: Ensures that data items are stored
reliably even in the face of peer failures.

Copyright is held by the author/owner(s).
WWW2004, May 17–22, 2004, New York, New York, USA.
ACM 1-58113-912-8/04/0005.

Fault Tolerant Torus

Data Store

Content Router Replication Manager

Storage and Indexing Framework

Figure 1: P2P Storage and Indexing Framework

4. Content Router: Allows efficient location of data items.

An additional benefit of the above framework is that we can
use existing algorithms proposed in the literature for the
various system components, and devise an overall system
whose functionality is greater than any existing P2P system
that we are aware of. Specifically, we can use the Chord [2,
7] algorithms for the Fault-Tolerant Torus and Replication
Manager, the PePeR [3] algorithms for the Data Store, and
the Skip Graph [1] algorithms for the Content Router, to
create a system that is fault-tolerant, supports both equality
and range queries, provides logarithmic search performance,
and supports possibly large sets of items per peer. We are
not aware of any other existing system that supports all of
the above functionality in a P2P environment, even though
each of the individual components by itself is not new.

2. THE FRAMEWORK
Figure 1 shows the components of our storage and index-

ing framework. We now provide an overview of these compo-
nents and examples of their instantiation. We do not discuss
each component’s exact API due to space limitations.

2.1 Fault Tolerant Torus
The primary goal of the Fault-Tolerant Torus (FTT) is to

maintain the connectivity of the peers in the system. Con-
ceptually, the FTT maintains a mapping of regions in a torus
to peers in the P2P system. We say that a peer is responsi-
ble for the region(s) assigned to it. The regions have to be
contiguous, so all the space is covered, and non-overlapping,
so any point on the torus is mapped to a single peer. The ex-
act torus space and the method of maintaining the mapping
depends on the particular implementation of the FTT.

Example Figure 2 shows an example of a ring (torus of
dimension 1) and a mapping of ranges (regions) to peers.
Peer p1 is responsible for the range (5, 10], p2 is responsible
for the range (10, 15] and so on. Each region of the ring

388



5

15

p1

10

18

20

p2

p3
p4

p5

5

15

p1

10

18

20

p2

p3
p4

p5

(6,t1)

Figure 2: Mapping
Ranges to Peers

Figure 3: Mapping Val-
ues to Peers

space is mapped to one (and only one) peer. Now, assume
that peer p1 fails. In this case, the Fault Tolerant Torus
needs to reassign the range (5, 10] to another peer. If a peer
can be responsible for only one region of the space, then p2

or p5 need to increase their range by taking over p1’s range.
The ring in Chord [7] is one possible instantiation of the

Fault Tolerant Torus. Here, the integer space [0, 2m) is the
ring space and peers are assigned an ID in this space. Each
peer is responsible for the region in the ring between its
predecessor ID and its ID. Other examples are the ring in
Pastry [6] and the d-dimensional torus in CAN [5].

2.2 Data Store
The Data Store is responsible for distributing the data

items to peers. Ideally, each peer should store approximately
the same number of items, achieving storage balance. The
Data Store maps each data item to a point in the torus
space, and stores the item at the peer responsible for the
region containing that point. If a peer ends up with too
many data items (due to insertions) or too few data items
(due to deletions), it will have to re-balance the assignment
of data items to peers. Exactly how this re-balancing is done
depends on the specific instantiation of this component.

Example In Figure 2, assume that a data item t1 mapped
to value 6 is inserted into the system. In this case, the pair
(6, t1) will be stored at peer p1 as shown in Figure 3.

The equivalent of the Data Store in Chord is implemented
using a hash-based scheme. Data items are hashed to values
on the ring, and assigned to the first peer with ID following
the value in the ring (note that since hashing destroys the
ordering of the values, Chord cannot process range queries).
PePeR [3] does not use hashing, but maps data items to the
peers responsible for the respective ranges in the value space.
Re-balancing is done at peer insertion or deletion/failure,
when some ranges are split respectively merged.

2.3 Replication Manager
The Fault Tolerant Torus component is responsible for en-

suring that each point on the torus is assigned to some peer
and the Data Store component is responsible for actually
storing the data items at peers. However, if a peer fails, the
data items it stored will be lost even if another peer takes
over the ”failed” region. The role of the Replication Man-
ager is to ensure that all the data items inserted into the
system are reliably (under reasonable failure assumptions)
stored at some peer until the items are explicitly deleted.

Example In Figure 3, peer p1 stores the pair (6, t1). If p1

fails, peer p2 or p5 will take over the range (5, 10] (as ensured
by the Fault Tolerant Torus component). However, the data

item t1 would be lost. If the pair (6, t1) is replicated at
another peer in the system, the data item can be recovered.

The Replication Manager can be instantiated using the
techniques proposed in CFS [2], where a peer’s items are
replicated to its successors in the ring, or PAST [4].

2.4 Content Router
The Content Router is responsible for efficiently rout-

ing messages to their destination in the P2P system. This
component implements the search primitives, such as equal-
ity and/or range queries. The Content Router component
could be instantiated using the Chord finger tables, the CAN
neighborhood table, or Skip Graphs [1].

3. APPLICATIONS OF THE FRAMEWORK
One of the main applications of the framework is to tai-

lor the system to the needs of the application. For exam-
ple, an Internet-based P2P file sharing system could use
the Fault-Tolerant Torus (for connectivity), the Data Store
(for managing files), and a somewhat sophisticated Con-
tent Router (for supporting equality lookups and keyword
search queries), but has no need for the Replication Man-
ager. An Internet storage management system, on the other
hand, needs a Replication Manager (for reliable storage),
but only needs a simple Content Router (only equality name
lookups), while the other components are the same as in
the file sharing system. P2P digital library systems, how-
ever, need a very sophisticated Content Router (that sup-
ports equality, keyword search, and range queries), a robust
Replication Manager and so on. The main benefit of the
framework is that it allows us to plug in the appropriate in-
stantiation of the relevant components for each application,
without having to redesign the entire system from scratch.

As described in the introduction, the other benefit of our
framework is that it enables us to put together a system that
has more functionality than any existing system, solely by
using existing components. Such a system is ideally suited
for the digital library application described above.

4. CONCLUSION
We have proposed a modularized storage and indexing

framework for P2P systems. This framework allows the
reuse of existing algorithms for various applications with
differing requirements. The framework also allows us to put
together novel systems using existing components. We have
a preliminary implementation of our framework, and are cur-
rently experimenting with different instantiations for digital
library, resource discovery, and file-sharing applications.

5. REFERENCES
[1] J. Aspnes and G. Shah. Skip graphs. In SODA, 2003.

[2] F. Dabek et al. Wide-area cooperative storage with
CFS. In SOSP, 2001.

[3] A. Daskos et al. Peper: A distributed range addressing
space for p2p systems. In DBISP2P, 2003.

[4] P. Druschel et al. PAST: A large-scale, persistent
peer-to-peer storage utility. In HotOS VIII, 2001.

[5] S. Ratnasamy et al. A scalable content-addressable
network. In SIGCOMM, 2001.

[6] A. Rowstron et al. Pastry: Scalable, decentralized
object location, and routing for large-scale peer-to-peer
systems. In Middleware, 2001.

[7] I. Stoica et al. Chord: A scalable peer-to-peer lookup
service for internet applications. In SIGCOMM, 2001.

389


