The Effect of the Back Button in a Random Walk: Application for PageRank

Fabien Mathieu
Gyroweb - INRIA, LIRMM
34392 Montpellier Cedex 5 France
fmathieu@clipper.ens.fr

Mohamed Bouklit
LIRMM
34392 Montpellier Cedex 5 France
bouklit@lirmm.fr

Abstract

Theoretical analysis of the Web graph is often used to improve the efficiency of search engines. The PageRank algorithm, proposed by [5], is used by the Google search engine [4] to improve the results of the queries.

The purpose of this article is to describe an enhanced version of the algorithm using a realistic model for the back button. We introduce a limited history stack model (you cannot click more than m times in a row), and show that when $m=1$, the computation of this Back PageRank can be as fast as that of a standard PageRank.

Categories and Subject Descriptors

F.2.1 [Analysis of Algorithms and Problem Complexity]: Numerical Algorithms and Problems-Computations on matrices

General Terms

Algorithms, Measurement

Keywords

Web analysis, PageRank, Random walk, flow, back button

1. INTRODUCTION

Since the introduction of the PageRank algorithm in 1998, numerous enhancement were made in both implementation and theorical efficiency. Using the stochastic aspect of the PageRank algorithm, the concept of backoff process was introduced by Fagin et al. [3] as an idealized model of browsing the web using both hyperlinks and the back button. This model allow the history stack to grow unboundedly. We introduce a bounded history stack, and show that in the special case of a one page history, there is an explicit and fast algorithm for computing the PageRank.

2. NOTATIONS

Let $G=(V, E)$ be a web graph, that is a set V of web pages linked to each other by a set E of edges.

If G is aperiodic and strongly connected, it is well known [6] that the iterative process

$$
\begin{equation*}
\forall v \in V, n \in \mathbb{N}, P_{n+1}(v)=\sum_{w \rightarrow v} \frac{P_{n}(w)}{d(w)} \tag{1}
\end{equation*}
$$

where $d(v)$ is the out-degree of $v \in V$, converges towards an unique probability P for any given probability P_{0}.

Copyright is held by the author/owner(s).
WWW2004, May 17-22, 2004, New York, New York, USA.
ACM 1-58113-912-8/04/0005.

However the web graph is far from being strongly connected [2]. One solution is to introduce a dumping factor d. The principle of the dumping factor is to "dump" the iterative process:

$$
\begin{equation*}
\forall v \in V, n \in \mathbb{N}, P_{n+1}(v)=d \sum_{w \rightarrow v} \frac{P_{n}(w)}{d(w)}+(1-d) S(v) \tag{2}
\end{equation*}
$$

where S is a given probability on V^{1}.
A dumping factor is equivalent to working on a weighted strongly connected graph. If G is leafless, the limit P of (2) exists. Otherwise, normalization is needed.

3. BACK BUTTON MODEL

We suggest to refine the PageRank model by inserting the possibility to return. We choose a bounded history stack, so the PageRank algorithm is equivalent to a Markov chain with finite memory m. Potentially, this leads to consider all the possible paths in G of length m. For $m=1$, this corresponds to the set E of the hyperlinks. We introduce two intuitive models for $m=1$, one of them collapsing the working space from E to V. To begin with and for simplicity, we examine our Back button process without dumping.

3.1 Reversible back

In this model, we suppose that the web user can click at each state either on the links or on the Back button (the Back button is then considered as an outgoing link like the others). The probability of using the Back button is the same as that of using a given link. using Back button brings the user back to the previous state ${ }^{2}$.

Let $P_{n}^{r b}(w, v)$ be the probability of being in v in the instant n coming from w in the instant $n-1 . P_{n}^{r b}(w, v)$ is defined if $(w, v) \in E$ or $(v, w) \in E$. We can express the probability $P_{n}(v)$ of being in v at the instant n as follows:

$$
\begin{equation*}
P_{n}(v)=\sum_{w \mapsto v} P_{n}^{r b}(w, v) \tag{3}
\end{equation*}
$$

Note that because of the Back process, we work on the nondirected graph induced by G.

Working on the same principle, we deduce an equation expressing $P^{r b}(w, v)$: if $(w, v) \notin E$ (but (v, w) is), going from w to v implies using the Back button; then we were previously in w coming from v. Otherwise, either the Back button or the regular link can be used. Thus we have:

[^0]\[

P_{n+1}^{r b}(w, v)=\left\{$$
\begin{array}{l}
\frac{1}{d(w)+1}\left(P_{n}(w)+P_{n}^{r b}(v, w)\right) \text { if }(w, v) \in E, \tag{4}\\
\frac{P_{n}^{r b}(v, w)}{d(w)+1} \text { otherwise. }
\end{array}
$$\right.
\]

Using (3) and (4) gives an iterative process for computing the new PageRank, but if $G^{\prime}=\left(V, E^{\prime}\right)$ is the non-oriented graph induced by G, we have to use $|V|+\left|E^{\prime}\right|$ variables instead of $|V|$ for the standard PageRank.

3.2 Irreversible Back

We now consider that the Back button cannot be used twice consecutively. This model, which seems more complex, as however three important advantages. First, it significantly reduces the stored PageRank by "greenhouse effect" in the end-nodes. Second, it is more appropriate to the insertion of a dumping factor (see 3.3). Finally it is less heavy on resource.

For $(w, v) \in E$, let $P_{n}^{i b}(w, v)$ be the probability to arrive at v using an hyperlink in w, and $\bar{P}_{n}^{i b}(v)$ the probability to arrive at v using the Back button. $\bar{P}_{n+1}^{i b}$ can be deduced from $P_{n}^{i b}$:

$$
\begin{equation*}
\bar{P}_{n+1}^{i b}(v)=\sum_{w \leftarrow v} \frac{P_{n}^{i b}(v, w)}{d(w)+1} \tag{5}
\end{equation*}
$$

Then we can tell $P_{n+1}^{i b}$ from $P_{n}^{i b}$ and $\bar{P}_{n}^{i b}$:

$$
\begin{equation*}
P_{n+1}^{i b}(w, v)=\frac{1}{d(w)+1} \sum_{u \rightarrow w} P_{n}^{i b}(u, w)+\frac{\bar{P}_{n}^{i b}(w)}{d(w)} \tag{6}
\end{equation*}
$$

We can note that $P_{n+1}^{i b}(w, v)$ does not depend on the arrival node v. We can then use $P_{n}^{i b}$ on V instead of E, specifying only the departure node.

Equations (5) and (6) can now be written:

$$
\begin{gather*}
\bar{P}_{n+1}^{i b}(v)=P_{n}^{i b}(v) \sum_{w \leftarrow v} \frac{1}{d(w)+1} \tag{7}\\
P_{n+1}^{i b}(v)=\frac{1}{d(v)+1} \sum_{w \rightarrow v} P_{n}^{i b}(w)+\frac{\bar{P}_{n}^{i b}(v)}{d(v)} \tag{8}
\end{gather*}
$$

3.3 Back button and dumping

For a real graph, insertion of the Back button ensures there is virtually no leaf, but the process may still not be irreducible, so we need to introduce a dumping factor. We made the choice to deactivate the back button after a crossing ${ }^{3}$. We can then merge (2), (7) and (8) to obtain:

$$
\begin{gather*}
\bar{P}_{n+1}^{i b}(v)=d P_{n}^{i b}(v)\left(\sum_{w \leftarrow v} \frac{1}{d(w)+1}\right)+(1-d) S(v) \tag{9}\\
P_{n+1}^{i b}(v)=d\left(\frac{1}{d(v)+1} \sum_{w \rightarrow v} P_{n}^{i b}(w)+\frac{\bar{P}_{n}^{i b}(v)}{d(v)}\right) \tag{10}
\end{gather*}
$$

[^1]
4. EFFECTIVE COMPUTATION

4.1 Convergence

The process we made is stochastic (there is no blind way), aperiodic and irreducible (because of the dumping factor). The PerronFrobenius theorem applies and ensures that the iterative process converges towards an unique fixed point.

4.2 Optimization

Using (9) and (10), we get an iterative way of calculating $P_{n}^{i b}$, and $P_{n+1}^{i b}(v)$ is equal to:

$$
\begin{equation*}
\sum_{w \rightarrow v} \frac{d P_{n}^{i b}(w)}{d(v)+1}+\sum_{w \leftarrow v} \frac{d^{2} P_{n-1}^{i b}(v)}{d(v)(d(w)+1)}+\frac{d(1-d) S(v)}{d(v)} \tag{11}
\end{equation*}
$$

Equation (11) is a two terms recurrence, but as we want to compute a fix point, the Gauss-Seidel method allows to use $P_{n}^{i b}$ instead of $P_{n-1}^{i b}$; indeed one can approximate $P_{n+1}^{i b}(v)$ by:

$$
\begin{equation*}
\sum_{w \rightarrow v} \frac{d P_{n}^{i b}(w)}{d(v)+1}+\sum_{w \leftarrow v} \frac{d^{2} P_{n}^{i b}(v)}{d(v)(d(w)+1)}+\frac{d(1-d) S(v)}{d(v)} \tag{12}
\end{equation*}
$$

We remark that this iterative process has the same complexity that the standard PageRank computation.
Once $P_{n}^{i b}$ has converged toward a vector $P^{i b}$, we obtain easily the asymptotic probability of presence P as follows:

$$
\begin{equation*}
P(v)=\sum_{w \rightarrow v} P^{i b}(w)+\bar{P}^{i b}(v) \tag{13}
\end{equation*}
$$

5. CONCLUSION

We have proposed an alternative PageRank that can be obtained as easily that the standard PageRank and that should offer a better modelization of the web users. Computations made on a 8 millions pages graph showed that the top ranked pages differ from one model to another, yet both seemed interesting. We still have to merge this algorithm with a semantic pertinence-sort to be able to test this new model in the "real life".

6. REFERENCES

[1] S. Brin, R. Motwani, L. Page, and T. Winograd. What can you do with a Web in your Pocket? Data Engineering Bulletin, 21(2):37-47, 1998.
[2] A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R. Stata, A. Tomkins, and J. Wiener. Graph structure in the web. Computer Networks: The International Journal of Computer and Telecommunications Networking, 33(1-6):309-320, 2000.
[3] R. Fagin, A. R. Karlin, J. Kleinberg, P. Raghavan, S. Rajagopalan, R. Rubinfeld, M. Sudan, and A. Tomkins. Random walks with "back buttons" (extended abstract). pages 484-493, 2000.
[4] Google. http://www.google.com/, 1998.
[5] L. Page, S. Brin, R. Motwani, and T. Winograd. The PageRank Citation Ranking: Bringing Order to the Web. Technical report, Computer Science Department, Stanford University, 1998.
[6] L. Saloff-Coste. Lectures on finite Markov chains. In G. G. E. Giné and L. Saloff-Coste, editors, Lecture Notes on Probability Theory and Statistics, number 1665 in LNM, pages 301-413. Springer Verlag, 1996.

[^0]: ${ }^{1}$ Most of the time, $S \equiv \frac{1}{|V|}$, but some have suggested that it would be better to "personalize" it [1].
 ${ }^{2}$ Thus two consecutive uses of the Back button cancel each other.

[^1]: ${ }^{3}$ Deactivating the back button after a crossing avoids to consider the $V \times V$ crossing transitions in the Back process.

