

A Scheme of Service Discovery and Control
on Ubiquitous Devices

Mitsutaka WATANABE
Mitsutaka.Watanabe@unisys.co.jp

Ken-ichi TAKAYA
Kenichi.TakayaKE04@unisys.co.jp

Akishi SEO
Akishi.Seo@unisys.co.jp

Nihon Unisys, Ltd.
1-1-1 Toyosu, Koto-Ku, Tokyo, Japan

+81-3-5546-5721

Masatomo HASHIMOTO
masatomo@carc.aist.go.jp

Tomonori IZUMIDA
tizmd@carc.aist.go.jp

Akira MORI
amori@carc.aist.go.jp

National Institute of Advanced Industrial Science and Technology (AIST)
2-41-6 Aomi, Koto-ku, Tokyo, Japan

+81-3-5546-5721

ABSTRACT
In this paper, we describe the discovery of service and controlling
them in ubiquitous devices.

Categories and Subject Descriptors
H.5.2 [User Interface]:

General Terms
Design

Keywords
Ubiquitous computing, Service discovery, Ad-hoc network, Peer
to Peer

1. INTRODUCTION
The ubiquitous computing has long been in vogue. When we can
build-in intelligence into familiar devices nearby us, user-interface
will evolve into a natural one to us so that devices could
automatically execute what we expect them to do, or they could
be controlled by voice, gesture and so on. To realize these
ubiquitous computing environments, we must establish schemes
that can control network-connected computers embedded in
everyday-use devices.

We have developed a set of hardware and software components to
realize such ubiquitous computing environments, based on two
keywords, "simple" (easy to implement) and "open"(adopt widely
publicized specifications). And this set has been resulted into
UBKit (Ubiquity Building Toolkit)[1]. An ultra small (Compact
Flush card-sized) and power-saving MPU module [2], one of the
UBKit modules, can run on Linux and work as a micro-server
with a wireless communication module. By attaching the micro-
server to the existing consumer electronics appliances which have
no network controller, these appliances can be connected with
network and be accessed from outside. (Plug and Play).

In this paper we propose a scheme that can connect these micro-
server enabled appliances to network without complex setup and
easily discover and control them.

2. ZERO-CONFIGURED NETWORK
PARTICIPATION
Every device should be able to connect to each other in Ad-Hoc
wireless network anytime anywhere. As Ad-Hoc networks
generally do not always contain servers that are essential in IP-
networks like DHCP or DNS, a scheme is needed that each device
could communicate to others without servers. In IP-address
assignment and service publish and discovery, UBKit adopts
Apple's Rendezvous[3] scheme. Rendezvous consists of the
following three open specifications, Zeroconf[4] assigning IPv4
address by itself, Multicast DNS[5] enabling name resolution
without DNS server, and DNS-SD[6][7] which can publish and
search services provided by hosts. However, we can find only an
IP-address and a port number of the specific device in terms of
service name and protocol name in this scheme. Also types of
services are limited to the range of Well-Known Port Numbers
described in IANA [8]. Furthermore, users of a particular service
must know the specification of the service beforehand.
We have defined an access interface to devices offering functions
(service) in UBKit and we have devised an scheme in which
devices can proactively discover services and describe contents of
services by extending DNS-SD service description specification.

3. ACCESS INTERFACE TO DEVICES
When we map service requests to the actual operations of devices,
such as "pushing buttons" or "rotating a knob", these operations
are independent of others and do not always require the "session"
idea. In other words, a device requires just a kind of RPC-like
interfaces that return results of behavior when the device receives
service request from other devices. Many RPC-protocol
specifications exist today, such as CORBA or SOAP but these
specifications are so complex for seeking high functionality that it
is difficult to implement on the memory size and processing-
power limited micro-server. Therefore, UBKit has adopted HTTP
and/or CGI requests as service request interface and returns a
single kind of data with MIME type. In other words, UBKit
assigns services (functions) of a device to a unique URL and

Copyright is held by the author/owner(s).
WWW 2004, May 17–22, 2004, New York, New York, USA.
ACM 1-58113-912-8/04/0005.

322

control the device by requesting the URL. In this environment, a
device requesting services are only required to provide a HTTP-
client function (such as Web browsing).

Every device in UBKit also provides a graphical operation
interface using Web pages when human directly accesses it. As
the actual execution of services is implemented as CGI, Web
pages are written as a simple front-end interface. For example,
when a TV device is accessed directly via a Web browser, it
returns a GUI interface which enable TV operations, looking like
a kind of TV remote console.

4. EXTENSION OF SERVICE
DESCRIPTION
DNS-SD describes services in DNS records and resolves service-
instance name by referring IANA-defined protocol names in PTR
record. Also real host name, a port number and additional
information can be obtained from service-instance name by
referring SRV and TXT records.
As devices in UBKit are controlled by HTTP requests and/or CGI,
the service type is “_http._tcp”. But in this notation all devices
have the same information and no information is available about
each device's services. In UBKit-supported devices application
name is added as a sub-type so as to allow more specific
definition on a service-type (see Table 1). The sub-types consist
of “_ubkit” sub-type and also an application-uniquely defined
sub-type. In TXT record field “_a” containing the sub-type must
be mandatory, so that network-connected devices can select the
devices containing “_ubkit._http._tcp” and scan the ‘_a’ fields
and get information about services available on the network.

Table 1. Definition of service description in UBKit

key type value

_http._tcp. PTR [device name]._http._tcp.

_ubkit._http._tcp. PTR [device name]._http._tcp.
_[service
name]._ubkit._http._tcp PTR [device name]._http._tcp.

[device name]._http._tcp. SRV [hostname]:[port] …

[device name]._http._tcp. TXT _a=[service name], …

5. EXAMPLE
As a sample application using our proposed scheme, we have
developed a service icon browser that displays a device’s icon
when the device participates in the network.

The devices offering this browser services contains the subtype
“_face” and describe as additional information: the device’s
graphic image path like “image=/path/to/image.jpg” and the path
to GUI “path=/path/to/page.cgi”. By pre-defining just this
information, any device icon can be displayed automatically on
the browser when devices connected to the network (see Figure 1).

Figure 1. Screenshot of Service Icon Browser

When a device having a “_face._ubkit._http._tcp” participates in
the network, other devices get the newly joined device’s attributes
“image” and “path” and generate a HTML document including
the image with a link to the device’s GUI (see Figure 2).

Device

im age

GUI

Service Icon B rowserService Icon B rowserService Icon B rowserService Icon B rowser

load

<im g src=... >

Figure 2. Relation between the Browser and Devices

Since device’s images are displayed as a source of tag, a
browser can always load the latest image. Therefore, devices
generate an image dynamically reflecting the current running
status, just like live-camera or any other real time monitoring
device.

6. SUMMARY AND CONCLUSIONS
We have developed a scheme in which relatively low-processing
devices can be discovered and accessed for their services with
zero configuration setup in the no server environment. Some
devices are running and implemented with this scheme and
automatically controlling each other coupled with sensor-modules
in our test-beds.
We are planning to extend this scheme to other device control
architecture.

7. REFERENCES
[1] UBKit – Open Platform Lab.

http://opl.carc.jp/

[2] Mitsubishi Electric, Co. Press Release, October 2003
http://www.mitsubishielectric.co.jp/news-
data/2003/pdf/1008.pdf

[3] http://www.zeroconf.org/Rendezvous/

[4] http://www.zeroconf.org/

[5] http://www.multicastdns.org/

[6] http://www.dns-sd.org/

[7] RFC2782, http://www.ietf.org/rfc/rfc2782.txt

[8] Port Numbers, IANA.
http://www.iana.org/assignments/port-numbers

323

