
Type based service composition

Ion Constantinescu Boi Faltings Walter Binder
Artificial Intelligence Laboratory

Swiss Federal Institute of Technology
IN (Ecublens), CH–1015 Lausanne (Switzerland)

{ion.constantinescu,boi.faltings,walter.binder}@epfl.ch

ABSTRACT
Service matchmaking and composition has recently drawn increas-
ing attention in the research community. Most existing algorithms
construct chains of services based on exact matches of input/output
types. However, this does not work when the available services
only cover a part of the range of the input type. We present an
algorithm that also allows partial matches and composes them us-
ing switches that decide on the required service at runtime based
on the actual data type. We report experiments on randomly gen-
erated composition problems that show that using partial matches
can decrease the failure rate of the integration algorithm using only
complete matches by up to 7 times with no increase in the number
of directory accesses required. This shows that composition with
partial matches is an essential and useful element of web service
composition.1

Categories and Subject Descriptors: H.3.5 Online Information
Services : Web-based services, D.2.12 Interoperability : Dis-
tributed objects, D.2.m Miscellaneous : Reusable software.
General Terms: Design, Management.
Keywords: web services, large scale discovery, type based com-
position, partial matches, runtime non-determinism.

1. AUTOMATIC SERVICE COMPOSITION
Service composition is an exciting area which has received a sig-

nificant amount of interest in the last period.
Initial approaches to web service composition [7] used a simple

forward chaining technique which can result in the discovery of
large numbers of services.

There is a good body of work which tries to address the service
composition problem by use planning techniques based either on
theorem proving (e.g., Golog and [4, 5] or on hierarchical task plan-
ning (e.g., SHOP-2 [8]). The advantage of this kind of approach is
that complex constructs like loops (Golog) or processes (SHOP-2)
can be handled. All these approaches assume that the relevant ser-
vice descriptions are initially loaded into the reasoning reasoning
engine and that no discovery is performed during composition.

Recently Lassila [2] has addressed in more detail the problem
of interleaving discovery and integration but has considered only

1The work presented in this paper was partly carried out in the
framework of the EPFL Center for Global Computing and was sup-
ported by the Swiss National Science Foundation as part of the
project MAGIC (FNRS-68155), as well as by the Swiss National
Funding Agency OFES as part of the European projects Knowl-
edgeWeb (FP6-507482) and DIP (FP6-507483).

Copyright is held by the author/owner(s).
WWW2004, May 17–22, 2004, New York, New York, USA.
ACM 1-58113-912-8/04/0005.

simple workflows where services have one input and one output.
In this paper we are concerned by a particular combination of

issues that is specific and unique to the web services context:

1. discovery in large scale directories - we assume that a large
number of available web services will be stored in (possibly
distributed) directories. How should we discover exactly the
services that are relevant at each step of our composition pro-
cess?

2. runtime non-determinism - when discovered services do
not match completely2, the reasoning engine will have to ag-
gregate several services in order to fulfill the required func-
tionality. The actual flow of messages will be routed based
on runtime parameters on the appropriate paths. How can
we discover and create those switches and how can we make
sure that they handle correctly all possible combinations of
parameter values?

Other challenging issues are not addressed in these this paper but
are considered for future work: behavior based integration, dealing
with side-effects and changes of the world that are not under the
control of the composition engine, knowledge engineering issues,
to enumerate only a few.

This paper contributes with solutions to these two issues. As a
first contribution we present an algorithm that interleaves the dis-
covery and composition process by using a partial order planning
approach that focuses the directory searches. Our second contri-
bution is a technique for discovering and composing services with
partial type compatibility. In our approach we discretize the space
of possible parameter values and we use a greedy method to incre-
mentally reduce the space of values that cannot be handled. Then
partially matching components are assembled into switches that
can route the flow of messages on the appropriate paths based on
runtime values.

2. COMPUTING SERVICE INTEGRATION
PLANS

We consider a service integration query specified in terms of a
set of available input parameters and a set of required output pa-
rameters. An integration solution will consist of a given ordering
of services that can be invoked such that finally all parameters re-
quired by the query are known.

For solving the problem we first discover and apply forward
and backward complete matches. Applying backward completely
2The subsume match type identified by Paolluci [6] and the inter-
section or overlap match type identified by Li [3] and Constanti-
nescu [1].

268



service parameter 
set

query forward 
complete 
matches

backward 
complete 
matches

query

switch

available parameters required parameters

forward 
partial 
matches

switches branch available 
parameters

sub-problem

sub-problems from: 
branch available 

x 
backward required 

Figure 1: A service query matching type perspective on service
integration.

matching services creates a directed graph of sets of required pa-
rameters as the order in which different parameters can be applied
affects the set of parameters that still need to be provided.

Several forward partially matching services can be aggregated
together into a composite service as a software switch that maps
each possible combination of parameter values from the space of
available inputs to one or more partially matching services. In or-
der to be able to fulfill the same functionality as the completely
matching service, we have to have for each possible range com-
bination of input parameters one or more services that can accept
those values. For determining which of the discovered switches can
be used for the final solution one has to make sure that all switch
branches care correctly provide the required parameters. For that
sub-problems can be generated as a cross product between the out-
put parameters provided by each switch branch and the parameters
required by any of the backward required inputs. For each branch
at least one of such problems will have to lead to a solution in order
for the switch to function correctly.

3. EVALUATION AND ASSESSMENT
For evaluation purposes we have defined an abstract domain (see

Fig. 2) where we consider a number of layers that define sets of
parameter names. Services are defined as transformations between
parameters in adjacent layers and problems are defined between pa-
rameters of the first and last layer. For example, a possible service
between layers1-2 with the parameters A, B could have as input the
types A=a1, B=b1,b2 and for the output parameters C and D could
have as types C=c2, c3 and D=d1, d2. For the input parameters A,
B the query could have the types A=a1,a2, B=b2 and for the output
parameters E,F the types E=e1, F=f2.

We have randomly generated services and problems which we
have solved using first an algorithm that handles only complete type
matches and then an algorithm that handles partial type matches
(and obviously includes complete matches). We have measured the
number of directory accesses (Fig. 3 (a)) and the failure ratio of the
integration algorithms (Fig. 3 (a)).

Experiments with randomly generated problems show that such

A

B
a1 a2

b1

b2

E

F
e1 e2

f1

f2

C
D c1 c2 c3

d1

d2

d3

Services 
Layers 1-2

Services 
Layers 2-3

Query Layers 1-3

Layer 1 Layer 2 Layer 3

Figure 2: The layered domain - simplified example.

Layered Domain - Algorithm Performance

0

5

10

15

20

25

30

35

40

480 960 1440 1920 2400 2880 3360 3840 4320 4800 5280 5760

Number of Services

N
um

be
r 

of
 D

ir
ec

to
ry

 A
cc

es
se

s

Complete Type Matches

Partial Type Matches

Ideal

(a)

Layered Domain - Failure Ratio by Match Type

0

10

20

30

40

50

60

70

80

90

100

480 960 1440 1920 2400 2880 3360 3840 4320 4800 5280 5760

Number of Services

F
ai

lu
re

 R
at

e

Complete Type Matches

Partial Type Matches

7x

(b)

Figure 3: The layered domain.

partial matches bring significant gains in the range of problems that
can be solved by automated composition with a given set of ser-
vices (reducing the failure rate by factor 7). Furthermore, it appears
that this comes at no increase in the complexity as measured by the
number of accesses to service directories. Thus, we consider partial
matches to be an essential element of any future service composi-
tion algorithm.

4. REFERENCES
[1] I. Constantinescu and B. Faltings. Efficient matchmaking and

directory services. In The 2003 IEEE/WIC International
Conference on Web Intelligence, 2003.

[2] O. Lassila and S. Dixit. Interleaving discovery and
composition for simpleworkflows. In Semantic Web Services,
2004 AAAI Spring Symposium Series, 2004.

[3] L. Li and I. Horrocks. A software framework for matchmaking
based on semantic web technology. In Proceedings of the 12th
International Conference on the World Wide Web, 2003.

[4] S. McIlraith, T. Son, and H. Zeng. Mobilizing the semantic
web with daml-enabled web services. In Proc. Second
International Workshop on the Semantic Web (SemWeb-2001),
2001.

[5] S. A. McIlraith and T. C. Son. Adapting golog for
composition of semantic web services. In D. Fensel,
F. Giunchiglia, D. McGuinness, and M.-A. Williams, editors,
Proceedings of the 8th International Conference on Principles
and Knowledge Representation and Reasoning (KR-02), pages
482–496, 2002.

[6] M. Paolucci, T. Kawamura, T. R. Payne, and K. Sycara.
Semantic matching of web services capabilities. In
Proceedings of the 1st International Semantic Web Conference
(ISWC), 2002.

[7] S. Thakkar, C. A. Knoblock, J. L. Ambite, and C. Shahabi.
Dynamically composing web services from on-line sources. In
Proceeding of the AAAI-2002 Workshop on Intelligent Service
Integration, pages 1–7, 2002.

[8] D. Wu, B. Parsia, E. Sirin, J. Hendler, and D. Nau. Automating
DAML-S web services composition using SHOP2. In
Proceedings of 2nd International Semantic Web Conference
(ISWC2003), Sanibel Island, Florida, October 2003.

269


