
Reactive Rules Inference from Dynamic Dependency
Models

Asaf Adi, Opher Etzion, Dagan Gilat, Royi Ronen, Guy Sharon and Inna Skarbovsky
IBM, Haifa Research Laboratory

{adi, opher, dagang, royi, guysh, inna}@il.ibm.com

ABSTRACT
Defining dependency models is sometimes an easier, more
intuitive way for ontology representation than defining reactive
rules directly, as it provides a higher level of abstraction. We will
shortly introduce the ADI (Active Dependency Integration) model
capabilities, emphasizing new developments:
1. Support of automatic dependencies instantiation from an
abstract definition that expresses a general dependency in the
ontology, namely a "template".
2. Inference of rules for dynamic dependency models, where
dependencies and entities may be inserted, deleted and updated.

We use the eTrade example in order to exemplify those
capabilities.

Categories & Subject Descriptors:
Primary C.4 [Computer systems organization]: Performance of
Systems – modeling techniques, measurement techniques.

Secondary C.3 [Computer systems organization]: Special-
Purpose and Application-Based Systems – signal processing
systems.

General Terms: Algorithms, Management, Design, Theory.

Keywords: dependency models, reactive rules, active
systems, active databases, rule engine, event correlation,
relationships between entities.

1. INTRODUCTION
Dependencies of many types are common in enterprise systems.
They express the exact way in which entities affect other entities,
and closely related issues were pointed in [1] as a major
challenge. Some examples are:

1. An internet access provider allocates bandwidth for clients
considering the current load and the type of service level
agreement that each customer has. Any change in those requires
re-calculating the allocation. This is a value dependency: it
defines how the allocation value depends on other values.

2. In order to properly function, an internet site must have both its
WAS and its DB server working.

This is a business-logic dependency: It defines a constraint that
has to be met in order to ensure the availability of the site.

Currently, there is no tool that can provide a single seamless view
of all dependencies in an enterprise. Dependencies are dealt with
using ad-hoc tools that are usually not integrated or synchronized
with the rest of the enterprise system. It is thus impossible to
predict what the consequences of some change will be, or to have
efficient root-cause analysis. The vision is having an easy to use
tool for modeling multi-level dependencies, intelligently infer
reactive rules from the model and visualize it. ADI provides a
higher abstraction level than reactive rules, concentrating on
dependencies.

2. ADI MODEL AND DEVELOPMENTS
ADI models an ontology using entities and dependencies between
them. A comprehensive description of ADI can be found in [2]. In
general, ontology modeling consists of:

1. Defining the types of the entities and dependencies that can
exist in it ("Dependency Types" and "Entity Types" in [2]).

2. Defining instances of those dependencies between instances of
entities in a way that reflects the ontology. This is the actual
Model ("Facts" in [2]). A new development is the support of
general abstract dependencies (see section 2.2.).

3. Defining the effects that input events have on the system. An
effect can update data in an entity, create/delete an entity or
trigger an event ("Effects" in [2]). A new development is the
support in insertion and removal of entities and dependencies
from the model during runtime, and not solely on startup (see
section 2.2.).

We discuss those developments using the eTrade example.

2.1 eTrade example
A website provides online stock trading services. The trading
process is composed of: Transaction tasks (buy, sell), View
Portfolio, Login and Logout. The first two are operated by a
trading application, while the latter two - by an authentication
application. This is modeled by a mandatory dependency between
the services and the related applications as illustrated in figure1.
Login and Transaction tasks are crucial for the proper functioning
of the site. Therefore it depends on them in a mandatory
dependency, which means that the site fails to function if at least
one of them fails. Logout and View Portfolio are also important,
but the site can function even if one of them fails. Therefore, the
modeling requires one-out-of dependency, whose positive result is
mandatory for the site. The trading and authentication
applications depend, in a mandatory manner, on a DB server and

Copyright is held by the author/owner(s).
WWW 2004, May 17–22, 2004, New York, New York, USA.
ACM 1-58113-912-8/04/0005.

232

on two-out-of three WASes. Other examples for dependencies in
ADI are arithmetic or referring to some percent of the sources.

 Figure 1 - The eTrade Dependency Graph

2.2 Discussion
Suppose that the site decides to add another WAS. ADI supports
the insertion and removal of entities or dependencies (by Effects)
without having to change the model and deploy it again, but
dynamically react to such changes. Since many monitoring
systems have to deal with constantly changing topologies, not
having to "stop the world", lose the context and deploy the new
topology is an extremely useful feature. Changes in topology
influence data as well, and information has to be propagated
through the model.

This feature is at the heart of the other development. Suppose that
our site has mirror sites in several countries. We would like to
provide a mechanism that exempts the user from defining similar
dependencies when they are obvious. The solution is defining an
abstract dependency (a template) between entities. The actual
dependency will be instantiated immediately when entities of that
type are created, provided that they meet the conditions specified

in the template. For example, our site will be able to define a rule
stating that each couple of DB server and Authentication server
that have the same ID (they belong to the same mirror site) will
have a mandatory dependency between them. That dependency
will be automatically instantiated during runtime, without losing
context or having to deploy the model. A self-instantiating
abstract dependency is in effect a general rule in the ontology.
Having it exempts the user from defining an obvious dependency
and giving it as input. In large systems or in cases where the
model changes frequently, manual input of dependencies is
impractical and error-prone.

The importance of the dynamic model with abstract dependencies
is not only user convenience, build-time efficiency or support in
very large models. It also adds to the domain of problems solvable
by ADI problems whose topology is not bounded or not exactly
known in build time (or both).

The execution of a model is performed as follows: On an event,
all the effects defined for it are retrieved and executed. As a result,
new entities might be added, existing ones removed or their
attributes values changed. In any case, the dependencies these
entities participate in or had participated in are notified on the
change and have to be resolved. The result of this may affect
depending entities and so the process resumes until all changes
and impacts have been properly propagated through the
dependencies. Newly created and modified entities are checked
against all abstract dependencies they may participate in for the
dependency instance with the same context. If such an instance
exists, the entity is added to that instance as defined by the
abstract dependency. If a dependency with the same context does
not exist a new one is created and all the entities that have the
same context are added to it.

Dependencies in ADI are resolved using AMIT [2,3], a reactive
rule engine. Intuitively, one expects that a different set of reactive
rules will be arranged for every model according to its topology.
However, we have been able to develop a generic set of AMIT
rules that always stays the same, but can handle any ADI model.
The initial model and runtime changes are translated into events.
The rules are built in a way that they can represent and resolve the
dependencies in any model based on these input events, therefore
using AMIT in a compact elegant manner.

3. REFERENCES
[1] Avi Silberschatz, Michael Stonebraker, and Jeffrey D.

Ullman. Database Research: Achievements an Opportunities
into the 21st Century. SIGMOD Record 25(1) 1996: 52-63.

[2] A. Adi, O. Etzion, D. Gilat, and G. Sharon, “Inference of
Reactive Rules from Dependency Models”, LNCS, Springer-
Verlag, Heidelberg, November 2003, Vol. 2876, pp. 49-64.

[3] A.Adi, O. Etzion: The situation manger rule language.
RuleML-2002.

233

