
Cooperative Middleware Specialization for Service
Oriented Architectures

Nirmal K Mukhi
IBM T J Watson Research

Center
P O Box 704

Yorktown Heights, NY 10598

nmukhi@us.ibm.com

Ravi Konuru
IBM T J Watson Research

Center
P O Box 704

Yorktown Heights, NY 10598

rkonuru@us.ibm.com

Francisco Curbera
IBM T J Watson Research

Center
P O Box 704

Yorktown Heights, NY 10598

curbera@us.ibm.com

ABSTRACT
Service-oriented architectures (SOA) will provide the basis of the
next generation of distributed software systems, and have already
gained enormous traction in the industry through an XML–based
instantiation, Web services. A central aspect of SOAs is the looser
coupling between applications (services) that is achieved when ser-
vices publish their functional and non-functional behavioral char-
acteristics in a standardized, machine readable format. In this pa-
per we argue that in the basic SOA model access to metadata is
too static and results in inflexible interactions between requesters
and providers. We propose specific extensions to the SOA model
to allow service providers and requestors to dynamically expose
and negotiate their public behavior, resulting in the ability to spe-
cialize and optimize the middleware supporting an interaction. We
introduce a middleware architecture supporting this extended SOA
functionality, and describe a conformant implementation based on
standard Web services middleware. Finally, we demonstrate the
advantages of this approach with a detailed real world scenario.

Categories and Subject Descriptors
D.1 [Software]: Programming Techniques; D.2 [Software]: Soft-
ware Engineering

Keywords
Service–oriented architecture, Web services, Metadata exchange,
Middleware reconfiguration

1. INTRODUCTION
Service–oriented architectures (SOA) provide a promising way

to address problems related to the integration of heterogeneous ap-
plications in a distributed environment. In an SOA environment,
every application is assumed to be (potentially) under the control
of independent service providers, external or internal to an organi-
zation. As a consequence, applications are required to declaratively
define their functional and non–functional requirements and capa-
bilities in an agreed, machine readable format, eliminating implicit
and out–of–band assumptions about their behavior.

In the basic SOA model, service providers publish machine read-
able descriptions of their services in a publicly accessible registry;
service requestors discover those services by querying the registry,
and bind to the selected service dynamically. Automated service
discovery, selection and binding become native capabilities of SOC
Copyright is held by the author/owner(s).
WWW2004, May 17–22, 2004, New York, New York, USA.
ACM 1-58113-912-8/04/0005.

Application ApplicationMiddleware Middleware

Requestor Provider

Data
Transport

Service MetadataService Metadata

Figure 1: Service requestors and service providers

middleware. Dynamic binding capability leads to looser coupling
between applications and enables applications to efficiently adapt
to a changing environment.

Services in a SOA environment may interact in a variety of ways
which reflect the heterogeneity of supported applications, a conse-
quence of the widespread interest that the Web services instanti-
ation has created in almost every sector of the software industry.
In the most general situation, services interact as peers, but tradi-
tional client server interaction are likely to be common as well. At
each end of the interaction, services comprise three components on
which we will focus our attention (see Figure 1): theapplication or
service implementation, which provides the service business logic
as well as its associated resources (databases, legacy systems re-
sources, etc.;) theservice metadata, which defines the “published
view” of the application and is used by other parties to understand
what the service does, and how to interact with it; finally, the sup-
porting SOA middleware which provides the required interaction
protocols and supports service discovery and binding. In Figure 1
the party initiating the interaction and the party receiving it have
been labeled, respectively,requestor andprovider.

Different SOA interaction models will be supported by differ-
ent specializations of this configuration; that is, the symmetry of
Figure 1 need not imply that in every SOA interaction both parties
perform identical roles, or that identical middleware capabilities
are at work at both ends. We are particularly interested here in sit-
uations in which the middleware function enabled at each end is
dynamically determined at runtime. A typical example is that of a
mobile application interacting with a service provider. By allowing
the mobile application to assume middleware tasks otherwise per-
formed by the service provider, “disconnected” operation can yield

206

important performance gains at both ends. We argue here that the
mechanisms available to retrieve service metadata can play a key
role in supporting these sorts of scenarios.

Service metadata plays in central role in every aspect of SOA
architectures; the reliance on machine readable metadata is proba-
bly one of the key defining aspects of SOAs. Metadata in the form
of interface definitions, such as in CORBA’s IDL definitions, has
been present in distributed systems for a long time already [19].
Metadata in traditional systems has been mostly limited to func-
tional aspects of the service, while non-functional and middleware
interoperability characteristics have been treated as out-of band as-
sumptions, or manually discovered at development or deployment
time (for a discussion on this topic see [12]). The decoupling of im-
plementations achieved by separating and publishing object inter-
face definitions is generalized in SOA environments to include not
just functional aspects of the service operation, but quality of ser-
vice and middleware interoperability aspects as well. The impact
of metadata in middleware architectures is discussed in [9] where
it is argued that a new generation of middleware architectures is
needed to leverage the pervasive use of metadata in SOAs.

In the standard SOA model, service providers publish in machine
readable format all the information needed to access their services;
a (requestor) party willing to use a certain type of service discovers
services using a directory, and uses the published metadata to con-
figure its application and middleware to access the selected service.
The key point to stress is that the metadata published by the service
drives not only the business logic of the requestor, but determines
the middleware configuration it supports. In the basic publish, find,
bind SOA model, however, metadata is fundamentally static and
hard to tailor to the characteristics of specific users and usage sce-
narios.

The central idea of this paper is that service providers in an SOA
should be capable of exporting different aspects of their functional-
ity and operating environment, expressed in metadata, at runtime,
based on the identity of the requestor and the execution environ-
ment. The view that a service requestor has of the service is thus
customized. Based on this customized view, the requestor and
provider can then specialize the middleware at each end, result-
ing in an optimized interaction. Different specializations may take
place once the appropriate framework is available: specific com-
munication protocols or data formats may be chosen, function may
be offloaded to the requestor middleware, service behavior may be
customized for the particular requestor or execution environment.
We will use the Web services platform, an instantiation of the SOA
concept, to illustrate how these ideas apply.

Solutions to this problem need to satisfy three major require-
ments in order to adequately fit in a SOA environment. First, they
must avoid implicit architectural assumptions whenever possible
so as to preserve loose–coupling between the service requestor and
service provider; in particular, any assumptions made should be
declaratively expressed by the service metadata. Second, middle-
ware specializations should take place transparently to the applica-
tions, whenever functional aspects of the service are not affected.
Finally, existing mechanisms for discovering and accessing ser-
vices should be preserved; that is, operation without runtime spe-
cialization should be seamlessly supported.

This paper makes the following main contributions:

1. A proposal for a particular extension of SOA architectures
wherein service providers selectively expose aspects of their
functionality through metadata communicated at runtime to
service requestors.

2. The concept ofcooperative SOA middleware, which allows

transparent specialization based on runtime access to service
metadata.

3. An architecture supporting cooperative middleware special-
ization based on publicly available Web services middleware;
we also describe a prototype implementation.

The rest of this paper is organized as follows. Section 2 reviews
the potential benefits of middleware specialization. Section 3 in-
troduces an extension to the basic SOA model supporting runtime
customization of the service descriptions, and describes how coop-
erative specialization of middleware is enabled in this architecture.
Section 4 describes the realization of this architecture as an exten-
sion to existing Web services framework, and Section 5 describes
the implementation of the corresponding middleware support. In
Section 6 we present the application of this architecture to a specific
scenario. In Section 7 we review related work, and we conclude in
Section 8.

2. BENEFITS OF SPECIALIZED MIDDLE-
WARE FOR WEB SERVICES

The Web services platform is an instantiation of the SOA con-
cept. The platform consists of XML vocabularies to express proto-
cols, service interfaces, registration of services, service discovery,
policies, security, privacy and also the structure of service compo-
sitions. Some of the vocabularies (such as WSDL [8],[5], sum-
marised below) are close to being standardized, other areas es-
sential for business interactions (such as supporting Service Level
Agreements) have not been addressed as yet. Even so, the platform
has been met with wide–ranging industry support and already parts
of the platform are being deployed in business applications.

A WSDL document describes a service in terms of four facets:

1. The data types, generally described using XML schema.

2. The interfaces, calledportTypes in WSDL 1.1, which are col-
lections of operations, each of which describes a particular
pattern of message exchanges.

3. The protocol bindings, which describe how the functionality
described in each of the interfaces can be accessed through a
specific protocol. The dominant protocol binding used in the
Web services platform is the SOAP messaging format with
HTTP as the transport layer for messages.

4. A set of endpoints that collectively expose a service. Each
endpoint refers to a particular binding and thus represents
the availability of a specific interface through the described
protocol, accessible at the location described in the endpoint.

The Web services framework is an instance of an SOA. As a
result, service metadata is also a core concept in this framework.
Think of a WSDL description of a service as the essential meta-
data of the service. This metadata is used by service providers
to generate partial service implementations and configure support-
ing middleware and by service requestors to generate the necessary
client paraphernalia to communicate with a service. Traditional
distributed object systems such as CORBA rely on interface de-
scriptions as being sufficient descriptions of a distributed object.
Web services framework implementations have consciously or un-
consciously adopted this notion for services and as a result rely on
a WSDL document as being an adequate rendition of the service
for requestors to use.

A service requestor, using an exported WSDL is able to use
the locally available web services middleware to either generate

207

a binding–specific proxy or a generic proxy and communicate with
the web service by executing operations on the local proxy. The
advantage of this approach is that it simplifies service develop-
ment by completely factoring out the infrastructure available at a
service requestor’s end from the service provider. The service is
cleanly encapsulated and isolated and offers a modular architecture
for higher–level compositions. However, the problem is that the
conceptual cleanliness of this approach is also employed in the ex-
ecution of the web services middleware that support the interaction
between service requestor and the service provider. Specifically,
preserving this isolation between the provider and the requestor
from the concept to the implementation comes with certain costs:

1. Since the proxy has no knowledge of the service beyond the
service description, every call to the web service must nec-
essarily perform a round trip to the provider. As a result, the
proxy cannot leverage local resources (locally known Web
services that provide better quality of service, available CPU
cycles, etc.) when acting on behalf of the service.

2. Since all requestors are provided with the same
coarse-grained view of the service, there is no direct support
for customization of the service based on an individual re-
questor’s execution context and its requirements.

These drawbacks are not much of a factor when placed in the
context of the problems Web services is attempting to solve, viz.
the integration of business applications. In this domain, informa-
tion flow and updates must happen in a composite context of se-
curity, transactional spheres, processes, workflow, etc. The Web
services framework is defining a unified architecture and normal-
ized software infrastructure that can support the transformation of
existing IT assets into services which businesses can use and in-
tegrate to perform effectively and efficiently in a heterogeneous,
dynamic, distributed, multi–domain environment. The wordeffi-
ciency is used in the sense of reducing an error–prone and costly
manual process of communication that takes many days or weeks
into something that can be performed in a period that is drastically
less, such as day or a few hours. In other words, interactivity has
not been the driving force or the main priority in the development
of Web services.

However, the success of the Web services platform, its open
standards and the multi–vendor support has made it attractive in
non–traditional domains such in web portals that syndicate and ag-
gregate remote content and services, high–performance computing
carried out on Grids and pervasive computing. Clearly, responsive-
ness, mobility and customizability of applications are more impor-
tant in these arenas than for traditional business applications that
are not user–facing.

Optimizing interactions through dynamic middleware special-
ization thus has important implications for the use of Web services
in non–traditional domains.

3. COOPERATIVE SPECIALIZATION OF
SOA MIDDLEWARE

Here we discuss the use of SOA through an abstract model, the
different classes of dynamism we are proposing, and then propose
changes to traditional SOA platform designs to support the new
model. This discussion is focused on three facets of SOA platform
implementations: the way service metadata is handled, the struc-
ture of the middleware for service providers, and the structure of
the middleware for service requestors. Finally we discuss how this
model affects the sequence of events in interaction with a service
in an SOA environment.

3.1 Service Metadata
Service metadata can be used in SOAs to describe functional as

well as non-functional aspects of a service. Thus the service func-
tion (data types, interfaces), communication protocols used, details
of other middleware aspects such as authentication and encryption
protocols, transaction protocols, etc. can all be explicitly described
using metadata. Collectively, the machine-readable metadata pro-
vides a potential requestor with enough information to have an in-
teraction with the service automatically, as long as the metadata is
based on accepted standards.

In our model we letSM{i1 . . . ik} be thek metadata elements
that describe different aspects of the service provider. Tradition-
ally, this is a that common subset of metadata that is relevant for
the widest class of requestors and is sufficient for interacting with
the service. The metadata thus generally includes the a description
of the service functionality, data formats, and wire protocol infor-
mation. This set is communicated to the service requestor (via the
third piece in the architecture, the service broker, which is not cen-
tral to our discussion). The view of the service available for the
requestor is thusSreq = SM{i1 . . . ik}. Note that traditionally
this view is static.

We propose that the use of metadata to describe different aspects
of the service provider needs to be extensive. Some of it may be
relevant only for specific classes of requestors, kinds of commu-
nication or environmental conditions. It follows that some of this
metadata might need to be kept private since it may be platform–
dependent, expose essential portions of the business application’s
logic or server environment. So the recommended model advocates
publishing, as before, a minimal subset of this metadata but makes
an allowance for exchanging more details dynamically, once the
service requestor’s identity and environment is known. Thus, if the
service metadata set isSM{i1 . . . ip}, a requestor’s first view of
the service may beSreq = Sreq initial = SM{i1 . . . il} where
Sreq initial ⊂ SM{i1 . . . ip} but Sreq can be refined at runtime,
potentially to capture allp elements.

In order to achieve this, SOA implementations need to define
standard ways for service requestors to refine their views of a ser-
vice at runtime, based on the initial metadata they have available.
Refinements may take many forms, such as exposing finer–grained
aspects of interaction, and may also expose alternative realizations
of a known aspect (such as alternatives to the previously known
supported data communication protocols).

3.2 The Service Provider
The middleware on the service provider is configured depending

on the metadata published. For example, the provider may be ca-
pable of understanding many different communication protocols,
but is geared to handle just the ones published. Other aspects of
the provider middleware are not affected by the metadata. For ex-
ample, there may exist a data caching policy implemented by the
middleware but this is not advertised through the metadata and this
middleware piece thus remains unaffected.

We consider the middleware on the service provider as a set of
logical software componentsSPinfrastructure = SP{j1 . . . jv},
where eachji is a logical piece that has independent responsibil-
ity of some middleware task, such as understanding wire protocols,
marshalling and unmarshalling data according to some prescribed
format, enforcing security, handle caching, and finally handing off
data to and receiving data from the application. Each of these tasks
is logically independent. In practice however, a single piece of soft-
ware may perform more than one task and the fine-grained tuning
needed by our model may not be possible. Often the application it-
self performs some of these tasks. This practical reality affects the

208

extent to which our model can be adopted by real–world systems,
a subject we will revisit at the end of this section.

In order to successfully enable interactions for a particular ser-
vice, a subset of these logical components are required to be oper-
ating, let’s saySPinteraction = SP{jf . . . jh} where
SPinteraction ⊆ SP{j1 . . . jv}. Traditionally, this set is static for
a particular service.

In order for specialization on a per–requestor basis, we propose
to dynamically allowSPinteraction to be modified. We consider
two classes of changes:

1. Adding toSPinteraction: Based on information exchanged
at runtime, software components may need to be plugged in
at runtime. For example, based on runtime negotiation, the
requestor may advertise its knowledge of a high-performance
protocol. The provider middleware may have the capability
to use this protocol (i.e. the logical software component is
a member ofSPinfrastructure but may have to be added to
the active setSPinteraction).

2. ReducingSPinteraction: In other cases it may be necessary
to cull members from the set. For example, the provider may
have middleware that handles encryption and decryption of
data to and from the requestor. If it is discovered at runtime
that the requestor resides within the same corporate intranet
as the provider, it is no longer necessary to protect the confi-
dentiality of the data, so both sides may agree to turn off the
encryption.

Thus the provider middleware for an interaction,SPinteraction

will remain a subset ofSPinfrastructure but may undergo change
dynamically prior to and possibly during an interaction with a par-
ticular requestor. In order to achieve this degree of flexibility, the
middleware for the service provider has to be dynamically recon-
figurable.

3.3 Service Requestor
Similar arguments apply for service requestor middleware as those

presented above for the service provider middleware. The software
infrastructure available to the requestor can be represented by the
set of componentsSRinfrastructure = SR{i1 . . . iw},
where eachik is a logical software component. For a particular in-
teraction, the setSRinteraction is used, where
SRinteraction ⊆ SRinfrastructure. Each member of
SRinteraction is responsible for managing a particular aspect of in-
teractions with service providers. Specialization on a per-interaction
basis requires thatSRinteraction change dynamically responding
to the runtime negotiation between the requestor and provider. Thus
dynamically reconfigurable middleware is a prerequisite for sup-
porting this model.

3.4 Refining Service Interactions in SOA
Traditionally SOA implementation follow a three step mecha-

nism for enabling interaction with a service. Service providers ad-
vertise information about a service (thepublish step), requestors
discover services through a broker or registry (thefind step), they
then connect to the service (thebind step) and make use of it. Our
model requires the addition of two steps, described below:

1. Thefind-more step: This involves an interaction between the
requestor and provider where the requestor asks the provider
for more information about the service. The provider may
require the requestor to prove its identity, or to provide some
information about its environment before it can supply the

metadata being requested. A service provider has to pro-
vide support for a standardfind-more procedure through the
service endpoint and such support must be advertised in the
base metadata that was discovered by the requestor. If this
is not done, the requestor will assume that dynamic middle-
ware specialization is not possible for interactions with this
service. Thus the proposed model is a clean extension to base
SOA.

2. Thenegotiate step: A requestor and provider can negotiate
to create a more optimized end–to–end interaction, based on
the information they have about each other. Negotiation con-
sists of a series of exchanges that can take various forms.
For example, if a provider advertises its detailed data model
with all the constraints and data relationships specified in a
standard manner, the requestor might negotiate to enforce the
conformance with the required data model on the data be-
fore it leaves the requestor. Server offloading is common in
client–server architectures, and this would be its equivalent
in SOA. As another example, a provider may publish its de-
pendencies (other services it depends on) and the requestor
can then negotiate to supply the provider with matching ser-
vice instances, resulting in a more customized interaction. In
each case, the set of message exchanges depends on the kind
of negotiation taking place.

It must be noted that thefind-more and negotiate steps can be
used prior to any business interactions between applications to op-
timize the middleware. However, they may also take place at any
time during an interaction with a service. The possibility of gaining
more knowledge about a service dynamically results in potential
benefits for long–running interactions.

Additionally, we have pointed out before that loose–coupling is
one of the main benifits of SOA. Entering into detailed discov-
ery and negotiation that is driven by an individual requestor and
provider’s environment and execution context therefore seems coun-
terintuitive to SOA’s aims. An observation here is that specializa-
tion that is performed dynamically on a per-interaction basis does
not change the loose–coupling between the same service provider
and other requestors. Also, we mandate that thefind-more andne-
gotiate steps beoptional. Thus in the proposed model it is possible
to maintain existing loose–coupling as well as enter into interaction–
specific optimizations if they are supported by the interacting par-
ties and it is determined that there is potential benefit that can be
gained.

3.5 Designing dynamically reconfigurable mid-
dleware for SOA

We have already discussed the need for modifying the set of
logical software components used in the middleware on both the
service provider and service requestor ends of the interaction. In
real–world systems, these logical tasks are often performed by a
small number of independent software pieces which may be tightly
coupled to the application code that implements the business logic.
In such cases, reconfiguration on a per–interaction basis may be
possible only to a limited extent, if at all.

We propose the creation of a middleware framework that is a
first–class realization of the logical structure we described above.
The middleware consists of composable pieces of software, each
of which has independent responsibility for a part of the end-to-
end interaction. The middleware for a particular interaction can be
created by dynamic composition of such pieces. In the next section,
we describe an implementation based on this design. Our prototype
supports this model in the context of the Web services framework.

209

4. COOPERATIVE MIDDLEWARE FOR WEB
SERVICES

4.1 Metadata representation
The metadata representation used in our prototype are XML doc-

uments that conform to the WS-Policy specification [3]. WS-Policy
provides a general-purpose model to describe and communicate
non-functional aspects of service information. WS-Policy is a domain-
neutral framework, which is used to express domain-specific poli-
cies such as those for reliable messaging, security, and so on. It
provides the grammar to express and compose both simple declar-
ative assertions as well as conditional expressions.

<wsp:Policy xmlns:wsp="..." xmlns:wscache="...">
<wsp:ExactlyOne>

<wscache:Response maxSize=’1MB’ time=’30m’/>
<wscache:Response maxSize=’10MB’ time=’5m’/>

</wsp:ExactlyOne>
</wsp:policy>

The above policy describes the caching requirements for a par-
ticular application. One of two alternative policies can be sup-
ported. The first requires that responses upto 1MB in size be cached
for a minimum of 30 minutes, while the second requires that data
upto 10MB in size be cached for a minimum of 5 minutes. The
WS-Policy specification defines the framework for the policy dec-
laration (the XML elements with thewsp prefix) while domain-
specific data such as the caching parameters defined with thewscache
namespace prefix are separate.

Each policy that applies to a particular interaction will generally
have a corresponding piece of middleware that has the responsibil-
ity for enforcing the policy. For example, consider a policy that
declares that business data will be validated according to a specific
schema. The enforcement of the policy would entail parsing busi-
ness data to check conformance with the schema. A caching policy
such as that shown above would be backed up by a piece of soft-
ware that manages such a cache according to the prescribed rules,
thus enforcing the policy.

4.2 Runtime Metadata Discovery Interface
We define a Web services port type that will be supported by

all services allowing specialization. This port type allows the dy-
namic discovery of metadata. In this implementation, the provider
must be presented with the requestor’s security credential which
it can authenticate prior to supplying the information. The port
type supports two operations. ThegetInformationTypes operation
returns a list of XML namespaces, each of identifies a type of meta-
data. Each metadata piece has associated semantics which the re-
questor may or may not understand. The requestor can then ask the
provider to supply details on a type of metadata it recognizes using
the getInformation operation. The WSDL port type definition is
presented below.

4.3 Runtime Negotiation Interfaces
We define a set of Web services port types for runtime negotia-

tion that enable different kinds of optimizations in a service inter-
action. As we indicated in section 3 the exact messages exchanged
depends on the kind of negotiation taking place. The key therefore
is to allow the support of an extensible set of negotiation interfaces.

In our prototype we support two particular negotiation interfaces,
described in detail in the subsections below. These interfaces en-
able dynamic negotiation to impact the responsiveness and cus-
tomizability of the service. These were identified in [15] as being
critical to the application of the Web services in non–traditional
domains such as mobile computing. The first interface deals with

<portType name="DynamicMetadata>
<!-- ’credential’ is a schema type for a -->
<!-- security credential -->
<!-- ’metadata-IDs’ is a schema type for a -->
<!-- list of URIs -->
<operation name="getInformationTypes">

<input name="credential" type="credential"/>
<output name="information" type="metadata-IDs"/>

</opration>
<!-- metadataReq is a schema type -->
<!-- that encapsulates a URI and credential -->
<operation name="getInformation">

<input name="id" type="metadataReq"/>
<output name="information" type="string"/>

</operation>
</portType>

Figure 2: WSDL port type for dynamic metadata exchange

offloading functionality. Some aspects of the service functionality
will be amenable to offloading, and allowing this to be discovered
and negotiated can have a positive impact on the response time in an
interaction with the service. The second interface deals with con-
figuring a service’s dependencies. By allowing requestors to match
a service’s dependencies to third–party providers, we demonstrate
customizability through dynamic negotiation.

4.3.1 Offloading negotiation
The first interface, calledOffloading-Negotiation is designed to

allow offloading of functionality from the provider to the requestor
middleware. It defines one operation,propose. This interface sup-
ports a particular protocol for negotiating offloading. In this pro-
tocol, there is only one type of message: a set of metadata items,
identified by URIs. Each metadata item identified in the message
must imply the existence of some middleware functionality that can
take place on either the provider or requestor ends without affecting
the end–to–end interaction from the viewpoint of the applications.
The data validation and caching policies we described above would
fall into this category. The protocol is described below:

1. The requestor sends to the provider a set of URIs identify-
ing a set of metadata. This represents a proposal from the
requestor. It consists of service metadata items whose corre-
sponding functionality it can take responsibility for. An ex-
ample of a candidate metadata item is a detailed data model
described using XML schema. This schema would be em-
bedded within a standard data policy format that would in-
clude parameters relating to strictness of the validation. The
semantics of this metadata are well–known and it is a candi-
date for use in an offloading negotiation since it implies the
existence of some middleware (in this case, a schema val-
idator). Moving schema validation from the provider to the
requestor will result in round–trips being saved, as long as
the requestor understands the data model and has the soft-
ware support to validate data against this model.

2. The provider responds with a message of the same form.
This is a counterproposal, and consists of a subset of the orig-
inal proposed metadata items. The counterproposal may be
identical to the proposal, in which case it is a communication
of the acceptance of the requestor’s proposal. Otherwise, it
reflects a disagreement and represents a viable set of meta-
data the responsibility for which can be managed by the re-
questor safely and within the limitations of the provider’s re-
configurability. The latter case may arise because the provider’s

210

software may not be factored in a manner that allows the re-
configuration that would be required following the offload-
ing. For example, if the requestor proposes to take the re-
sponsibility for tasks related to metadata itemsSMi1, SMi2

andSMi3, it may be that the software on the provider that
manages tasks related toSMi1 (which need to be disabled if
the functionality is to be offloaded) also takes care of tasks
related toSMi4 (which needs to be kept operational), and
that the software cannot be reconfigured to manage just one
task but not the others.

3. The proposals and counterproposals may continue until:

(a) A predefined number of maximum proposals is reached

(b) A proposal and counter–proposal match (reflecting agree-
ment) or

(c) The requestor declines to make further proposals.

4. If a proposal is agreed upon, the requestor and provider mid-
dleware must reconfigure themselves to manage all future
communication in a manner consistent with this agreement.

Figure 3 is the WSDL port type that represents this interface.

<portType name="Offloading-Negotiation">
<!-- ’proposalReq’ is a schema type that encapsulates -->
<!-- a list of metadata IDs (URIs) and a security -->
<!-- credential -->
<!-- ’proposal’ is a schema type that encapsulates -->
<!-- a list of metadata IDs -->
<operation name="propose">

<input name="initialProposal" type="proposalReq"/>
<output name="counterproposal" type="proposal"/>

</operation>
</portType>

Figure 3: WSDL port type for offloading functionality from
provider to requestor

4.3.2 Dependency negotiation
The second negotiation interface, calledDependency-Fulfillment

is designed to allow requestors to configure a service’s partners.
Each service can advertise its dependencies, or partners, using a
standard policy format. These partners then need to be mapped to
service instances, or businesses that can actually fulfill those de-
pendencies. The policy can declare the list of default partners that
will be used in the absence of any negotiation. By allowing an up-
front declaration of depdendencies using a standard policy format,
we allow a requestor to configure the partners used by a service to
make the service more customizable. For example, a travel reser-
vation service might allow requestors to configure which car rental
agency is used, and the requestor can pick the one that with which
it has a previous relationship.

This interface has one operation,setPartner, which requires that
the requestor send the provider a service reference for one of the
partners listed in the service’s dependency set. The provider is re-
quired to send the requestor a confirmation of the fulfillment of this
dependency through the provided reference. This operation can be
called repeatedly to fulfill more dependencies. The WSDL inter-
face is presented in figure 4.

4.4 Protocol for service interactions
Our new interaction protocol took into account the possibility of

the existence of port types that enabled cooperative specialization
of the middleware at runtime. The steps in a service interaction
following this protocol is as follows:

<portType name="DependencyFulfillment">
<!-- ’partnerData’ is a schema type that encapsulates -->
<!-- a security credential, partner name and a -->
<!-- service reference -->
<operation name="setPartner">

<input name="partnerRef" type="partnerData"/>
<output name="confirmation" type="string"/>

</operation>
</portType>

Figure 4: WSDL port type for fulfillment of service dependen-
cies

1. Exploration: When the requestor application first makes use
of a service, the requestor middleware determines if the pre-
dicted volume of interactions with this service is high enough
to justify optimizing the middleware used. If this isnot the
case, we advance to step 5 of the protocol and the service
interaction proceeds as usual, otherwise we enter the opti-
mization protocol described in steps 2–4.

2. View augmentation: The requestor middleware examines the
service description to see if theDynamic-Metadata port type
is available. If it is, the requestor invokes thegetInformation-
Types operation to get the list of metadata items available.
For each metadata item the requestor understands the seman-
tics of, it invokes thegetInformation operation so it that the
metadata is available to the requestor middleware. At the end
of this step, the requestor’s view of a service is complete to
the extent possible.

3. Negotiation 1 (Dependency Negotiation): The requestor mid-
dleware checks if the service view includes a description of
the service’s partners. If so, it examines each partner def-
inition to check if it is able to find a matching service in-
stance it would like to use in place of the (random) choice
made by the provider. For each such service instance, the re-
questor invokes thesetPartner operation on theDependency-
Fulfillment port type of the service.

4. Negotiation 2 (Offloading Negotiation): The requestor mid-
dleware examines the service view to see if it includes meta-
data items that imply some service function that can be of-
floaded. Based on this examination and the reconfigurability
of the requestor middleware, it enters into an offloading ne-
gotiation as described in 4.3.1.

5. Standard Interaction: The interaction between the applica-
tions takes place.

5. COOPERATIVE MIDDLEWARE IMPLE-
MENTATION

The Web services middleware we used in our prototype was
based on the Web Services Invocation Framework (WSIF) [11],
[17] and the Web Services Gateway [17]. WSIF is a framework
for using WSDL–described services in a protocol independent way
and was a starting point for our requestor–end middleware. The
Web Services Gateway defines an endpoint on a server to which
Web services can be deployed and is the basis for our provider–end
middleware.

As we described in section 3, we aimed to create independent
pieces of software we could compose in order to create the cus-
tomized middleware pipe for a particular interaction. This was
achieved through the use of message interceptors. Each interceptor
is a module that performs a small well–defined task and is handed

211

Application

Service Metadata

. . . .

Metadata
exchange
interceptor

Offloading
negotiation
interceptor

Dependency
negotiation
interceptor

Other

common and
app-specific
interceptors

Communication
with provider

Figure 5: Requestor middleware design

messages that flow to and from the application. Interceptors can be
composed into linear chains and can be deployed on a server–wide
basis. Interceptors are also programmable, for example it is possi-
ble to disable an interceptor so that it acts as a no–op when handed
a message, and also re–enable it later.

The set of interceptors initially installed represents the pool of
middleware components from which interaction–specific chains can
be composed. This pool can be augmented by installing new inter-
ceptors dynamically. An initial set of interceptors are chained to
manage the base case, just like static protocol stacks used in cur-
rent middleware infrastructures. However, the possibility of spe-
cializing the chain on a per–interaction basis through the addition
or removal of interceptors from the available pool differentiates our
approach. This design principle is used on both the requestor and
provider ends, as described below.

5.1 Requestor middleware design
WSIF provides requestors with a WSDL–based view of a ser-

vice. The API for interacting with a service is driven off the ab-
stract service description in the WSDL, and is independent of the
actual service instance used. Software layers beneath the API can
intelligently choose an appropriate binding (protocol) and a par-
ticular service instance. The WSIF framework allows customiza-
tions in the interaction protocol followed. This pluggable design
allows us to introduce specific interceptors that enable applications
to transparently follow the interaction protocol we designed. We
introduce interceptors for managing metadata exchange, managing
the offloading negotiation protocol and assigning service depen-
dencies. These interceptors handle the requestor’s role in steps 2–4
of the interaction protocol described in section 4.4. Figure 5 shows
the design for our requestor middleware.

5.2 Provider middleware design
The Web Services Gateway is a pluggable framework that acts as

a virtual endpoint for a set of services. Messages are routed to the
correct service instance, and the gateway also supports interception
of messages. A valuable feature of the gateway is that it is capable
of allowing data to be exchanged through an extensible set of chan-
nels, each of which supports a particular communication protocol.
The data arriving at a channel is normalized to a form that can be
consumed by the service implementation. Thus a service can trans-
parently augment its capability to understand a different protocols
through the use of the gateway as a virtual endpoint.

For our design we modified the service deployment mechanism
within the gateway so that each service description gets augmented
with Dynamic-Metadata, Dependency-Fulfillment andOffloading-
Negotiation port types. We designed three standard interceptors to

Application

Service Metadata

. . . .

Metadata
exchange
interceptor

Offloading
negotiation
interceptor

Dependency
negotiation
interceptor

Other
common and
app-specific
interceptors

Communication
with requestor

Basic service description (WSDL)

Application interfaces

Metadata exchange,
negotiation interfaces

Added by
provider

middleware

Protocol, endpoint
details

Figure 6: Provider middleware design

support these functions. These interceptors handle the provider’s
role in steps 2–4 of the interaction protocol described in 4.4. In
addition, a variety of interceptors responsible for enforcing the var-
ious policies associated with the application can be plugged in. Fig-
ure 6 illustrates the design of the provider middleware.

6. SCENARIO
Our example scenario describes an interaction between two ap-

plications: a data portal that provides information and access to
common applications used by employees of a large company, and
an employee database application, which allows employee records
to be looked up. The employee database application is accessible
to employees through the data portal, so that a subset of an em-
ployee’s information (such as contact number and office location)
is available to other employees. Through this scenario, we demon-
strate how an optimized interaction is enabled through the use of
the proposed architecture.

The employee database application is modeled as a Web service.
It is described in a standard manner using WSDL. This WSDL de-
scription is deployed to our provider middleware. This application
makes use of another application for converting data retrieved from
the database in XML format into a form that can be rendered more
easily, such as HTML. This converted data is then sent back to the
requestor. The data translation service is thus a dependency for
the employee database service. This dependency is declared in a
standard manner using the BPEL4WS language [2] but this meta-
data is initially kept hidden from requestors. The data exchanged
is validated against a prescribed schema, the parameters associated
with this validation are laid down in a WS-Policy document which
is not made public. A schema validator is among the pieces of in-
frastructure used for service interactions, and is implemented as an
interceptor in our provider middleware.

The requestor end, consisting of the data portal application, ac-
cesses the employee database service using the information con-
tained in the WSDL for the service. The portal application uses
WSIF’s API to make queries as directed by the end user. In ad-
dition to the interceptors for managing metadata exchange, depen-
dency negotiation and offloading negotiation, a schema validation
piece, implemented as an interceptor, also exists in the available re-
questor middleware infrastructure. Finally, the data portal detects
when an end–user’s device is a PDA or mobile phone and is aware
of the location of a service capable of converting XML data to a
renderable format for such devices.

212

Requestor
middleware

Provider
middleware

Data Portal
Application

Employee
Database

ApplicationQuery
Request metadata

Send metadata
Send pointers to

preferred partners

Confirm partner
assignment

Propose offloading of
schema validation

Counterproposal
Query

Result

Query

ResultResult

Query

Result

Query

Result

Result

Query

Database

Data
translation

service

Figure 7: Message sequence chart for scenario

Following the protocol described in 4.4 the result of the initiation
of an interaction between these services is:

1. The view of the employee database service available to the
data portal is enhanced with the addition of the BPEL4WS
document describing the partners used by the employee database
application and the data validation policy document.

2. The instance of the data translation service used by the em-
ployee database application is set by the data portal so that
the data is rendered in a form appropriate for the end user.

3. Schema validation is offloaded from the provider to the re-
questor middleware.

Figure 7 shows the sequence of message exchanges in this sce-
nario.

7. RELATED WORK
The issue of specializing service interactions with respect to the

context (device and environmental characteristics) of the requestor
is a well–known one especially in mobile computing. [4] discusses
the use of metadata to communicate non–functional aspects of an
application, which when combined with a “reflective middleware”
enables application customisation for each user in a mobile envi-
ronment. [13] proposes an adaptation architecture that uses profile
discovery, matching and finally application reconfiguration in order
to customise application behavior for a particular environment. In
both of these works middleware reconfiguration is triggered by the
end-user as opposed to the transparent mechanism described in this
paper. [6] discusses the use of “mobilets”, pieces of software that
can be downloaded, pushed or migrated. They are managed by spe-
cialized middleware running on a moble client and the server with
which it interacts. The latter two approaches rely on deployment of
identical middleware. This differs from the model proposed here
which does not demand any particular middleware implementation
on the requestor and provider to enable optimization, as long as

they support the standard port types for metadata exchange and ne-
gotiation.

The middleware framework we describe to support this model
uses Web services standards in order to operate in a heterogeneous
environment. Another popular standards–based middleware plat-
form is CORBA, and it has been the proving ground for many re-
lated efforts. It is extended in DADO [20] to use reconfiguration
aimed at easing development and deployment of cross–cutting fea-
tures. The motivation for reconfiguration here is thus to adapt to a
change, rather than for the purposes of optimizing an interaction as
we attempted to do. Dynamic TAO [14] is an early work in the area
of designing a CORBA ORB to enable application reconfiguration
(in this case for the purposes of injecting new functionality), while
OpenCOM [7] is an implementation of core parts of COM with the
same end goal. [18] discusses enabling some classes of adaptation
without having to resort to implementing an ORB, and uses an in-
terceptor architecture similar in flavor to the one described in this
paper. Smart CORBA proxies such as those described in [16] is
another approach to allowing transparent optimization of an inter-
action.

Through our use of runtime negotiation to enable offloading, we
attempted to address the problem of frequent round tripping to the
server. This is recognized in the web application domain where
programmers resort to using JavaScript to perform not only just
validation but also several other functions such as sorting and sim-
ple computations that do not go back to the server. The XFORMs
specification [1] also addresses this problem by supporting the defi-
nition of data models and corresponding constraints. An XFORMs
compliant browser, on receiving an XFORM document, can per-
form a great deal of validation including at the level of instance
values without requiring any code from the server or round trips to
the server. Our approach advocates a similar expression of suitable
metadata, going beyond the realm of presentation data alone. Tra-
ditional server offloading mechanisms are usually hardcoded into
the server and client applications. This paper proposes discovering
optimization possibilities dynamically, and is thus more flexible.

213

8. CONCLUSIONS AND FUTURE WORK
We conclude with some observations about the proposed model

and our prototype implementation, and discuss possible areas for
future work.

In our model, optimizations are performed with the constraints
of the ’provider’ and ’requestor’ roles and are localized to a subset
of the interactions between the two applications involved in these
roles. In most practical cases, the same application both requires
certain functionality (thus acting as a requestor) and provides cer-
tain functionality (this acting as a service provider) when interact-
ing with another application. Optimizations can be performed in a
more global context, with a recognition of all roles played by the
applications in of their interactions.

Our prototype is a first attempt at realizing the proposed model
and suffers from a number of limitations. Even though thefind–
more step in our model discusses two–way exchange of metadata,
our Web services port type for metadata exchange, as designed, al-
lows metadata flows from providers to requestors only. Ultimately
a requestor makes the decision as to what metadata is useful and
enters into negotiation protocols to enable optimizations. In many
cases, a service provider can send requestors relevant metadata by
discovering more about the requestor environment. Thus metadata
needs to be a exchanged both ways in order to optimize interac-
tions. Additionally, our prototype supports dynamic metadata ex-
change, negotiation and the reconfiguration as a one–time action
that takes place at the beginning of an interaction between a re-
questor and provider. As we noted in section 3 long–running inter-
actions can benefit from triggering metadata exchange, negotiation
and reconfiguration even midway through an interaction, based on
environmental changes, hardware events (such as major shifts in
network loads) or user preferences. We plan to enhance our service
interaction protocol to allow for this possibility, and re–engineer
our prototype to support it.

Dynamic reconfiguration of middleware based on runtime infor-
mation discovery has obvious performance implications. The cost
of undertaking extra steps for discovery and negotiation have to be
balanced against the gain from such optimizations. Additionally,
the frequency with which such negotiation is triggered is another
factor in the cost analysis. These topics need to be addressed in
future work.

The steps we added to the interaction protocol introduce poten-
tial security loopholes in the transaction taking place, since not only
application data but also policies that may impact the middleware
flow on the wire. We discussed in section 4 the need for requestors
to present security credentials when performing additional discov-
ery. This is insufficient for real–world applications. A trust rela-
tionship has to exist between parties in order for such potentially
dangerous information exchanges and negotiations to take place.
New industry specifications such as WS-Trust [10] address some
of the issues.

We have also discussed the transparency of dynamic change to
applications as being one of our goals. That is why, in our proto-
type, the interceptors that manage metadata exchange, negotiation
and the reconfiguration of other interceptors are all in the middle-
ware, hidden from the application. In mobile applications in par-
ticular, this can be counterproductive in creating a customized in-
teraction for an end–user, as indicated in [4]. Instead, allowing an
application to ’steer’ reconfiguration and negotiation is desirable.
Taking care of this requirement within the bounds of a loosely–
coupled architecture is another challenging problem we expect to
explore in future work.

Acknowledgment
The authors would like to thank Rania Khalaf for useful comments
during the writing of this paper.

9. REFERENCES
[1] XForms 1.0. Published on the World Wide Web by W3C,

November 2002.
[2] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein,

F. Leymann, K. Liu, D. Roller, D. Smith, I. Trickovic, and
S. Weerawarana. Business Process Execution Language for
Web Services Version 1.1. Published on the World Wide
Web, May 2003.

[3] D. Box, F. Curbera, D. Langworthy, A. Nadalin,
N. Nagaratnam, M. Nottingham, C. von Riegen, and
J. Shewchuk. Web Services Policy Framework (WS-Policy
Framework). Published online by IBM, BEA, and Microsoft
at http://www-
106.ibm.com/developerworks/webservices/library/ws-
polfram,
2002.

[4] L. Capra, W. Emmerich, and C. Mascolo. Reflective
Middleware solutions for context-aware applications. In
International Conference on Metalevel Architectures and
Separation of Crosscutting Concerns (Reflection), Kyoto,
Japan, September 2001.

[5] E. Christensen, F. Curbera, G. Meredith, and
S. Weerawarana. Web Services Description Language
(WSDL) 1.1. Published on the World Wide Web, Mar 2001.

[6] S.-N. Chuang, A. T. S. Chan, J. Cao, and R. Cheung.
Dynamic Service Reconfiguration for Wireless Web Access.
In 12th International World Wide Web Conference (WWW
2003), Budapest, Hungary, May 2003.

[7] M. Clarke, G. Blair, G. Coulson, and N. Parlavantzes. An
efficient component model for the construction of adaptive
middleware. InProceedings of the IFIP/ACM International
Conference on Distributed Systems Platforms and Open
Distributed Processing (Middleware), Heidelberg, Germany,
November 2001.

[8] F. Curbera, M. Duftler, R. Khalaf, W. Nagy, N. Mukhi, and
S. Weerawarana. Unraveling the Web Services web: An
introduction to SOAP, WSDL, and UDDI.IEEE Internet
Computing, 6(2):86–93, Mar/Apr 2002.

[9] F. Curbera and N. K. Mukhi. Metadata-Driven Middleware
for Web Services. InTo appear in the proceedings of the
Fourth International Conference on Web Information
Systems Engineering (WISE 2003), Rome, Italy, December
2003.

[10] G. Della-Libera, B. Dixon, P. Garg, P. Hallam-Baker,
M. Hondo, C. Kaler, H. Maruyama, A. Nadalin,
N. Nagaratnam, A. Nash, R. Philpott, H. Prafullchandra,
J. Shewchuk, D. Simon, E. Waingold, and R. Zolfonoon.
Web Services Trust Language (WS-Trust). Published online
by IBM, Verisign, Microsoft and RSA Security at
http://www-
106.ibm.com/developerworks/webservices/library/ws-trust,
2002.

[11] M. J. Duftler, N. K. Mukhi, A. Slominski, and
S. Weerawarana. Web Services Invocation Framework
(WSIF). InOOPSLA 2001 Workshop on Object-Oriented
Web Services, October 2001.

[12] W. Emmerich. Software engineering and middleware: a
roadmap. InProceedings of the conference on The Future of

214

Software Engineering (ICSE 2000), pages 117–129,
Limerick, Ireland, June 2000.

[13] N. Houssos, S. Pantazis, and A. Alonistioti. Generic
adaptation mechanism for the support of context-aware
service provision in 3G networks. InIEEE 4th International
Conference on Mobile Wireless Communication Networks
(MWCN 2002), Stockholm, Sweden, September 2002.

[14] F. Kon, B. Gill, M. Anand, R. H. Campbell, and M. D.
Mickunas. Secure Dynamic Reconfiguration of Scalable
CORBA Systems with Mobile Agents. InProceedings of the
IEEE Joint Symposium on Agent Systems and Applications /
Mobile Agents (ASA/MA’2000), Zurich, September 2000.

[15] R. Konuru and N. K. Mukhi. Requestor Friendly Web
Services. InFirst European Workshop on Object Orientation
and Web Services (EOOWS), Darmstadt, Germany, July
2003.

[16] T. J. Mowbray and R. C. Malveau.CORBA Design Patterns.
John Wiley and Sons, 1997.

[17] N. K. Mukhi, R. Khalaf, and P. Fremantle. Multiprotocol
Web Services for Enterprises and the Grid. InProceedings of
the EuroWeb 2002 Conference on the Web and the Grid:
From e-science to e-business, Oxford, UK, December 2002.

[18] P. Narasimhan, L. Moser, and P. Mellior-Smith. Using
Interceptors to enhance CORBA.IEEE Computer,
32(7):62–68, July 1999.

[19] S. Vinoski. CORBA: integrating diverse applications within
distributed heterogeneous environments.IEEE
Communications Magazine, 14(2), 1997.

[20] E. Wohlstadter, S. Jackson, and P. T. Devanbu. DADO:
Enhancing Middleware to Support Crosscutting Features in
Distributed, Heterogeneous Systems. InProceedings of the
International Conference on Software Engineering (ICSE),
pages 174–186, 2003.

215

