
Incremental Formalization of Document Annotations
through Ontology-Based Paraphrasing

Jim Blythe and Yolanda Gil
USC Information Sciences Institute

 4676 Admiralty Way
Marina del Rey, CA 90292

+1 310 448 8251

blythe@isi.edu, gil@isi.edu

ABSTRACT
For the manual semantic markup of documents to become wide-
spread, users must be able to express annotations that conform to
ontologies (or schemas) that have shared meaning. However, a
typical user is unlikely to be familiar with the details of the terms
as defined by the ontology authors. In addition, the idea to be
expressed may not fit perfectly within a pre-defined ontology.
The ideal tool should help users find a partial formalization that
closely follows the ontology where possible but deviates from the
formal representation where needed. We describe an implemented
approach to help users create semi-structured semantic
annotations for a document according to an extensible OWL
ontology. In our approach, users enter a short sentence in free text
to describe all or part of a document, and the system presents a set
of potential paraphrases of the sentence that are generated from
valid expressions in the ontology, from which the user chooses
the closest match. We use a combination of off-the-shelf parsing
tools and breadth-first search of expressions in the ontology to
help users create valid annotations starting from free text. The
user can also define new terms to augment the ontology, so the
potential matches can improve over time.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval] Content analysis and
indexing, abstracting methods I.2.6 [Artificial Intelligence]
Learning, knowledge acquisition

General Terms
Human Factors, Design.

Keywords
Document annotation, semantic markup, knowledge acquisition.

1. INTRODUCTION
Semantic annotations of documents can help to qualify their
contents, enable search and retrieval, and to support collaboration.
In some approaches, these annotations are extracted automatically
from the document [Dill et al., 5]. In other approaches, the
annotations are manually created by users [Kahan and Koivunen,
11]. Handcrafted annotations may be more accurate but more
importantly they enable users to reflect their opinions or their own
analysis of the document. However, expressing these annotations

formally is difficult for most web users, who are not skilled
knowledge engineers and may be unfamiliar with the domain
terms used in the formal annotations. Helping users to create
correct formal annotations that capture their intended expression
is a challenge that must be addressed if semantic annotation tools
are to become widely accessible.
In this paper we describe an approach that accepts user
annotations as short statements of free text and then helps to
formalize the statement, partially or totally, by mapping it to an
existing schema or ontology. Given a free text statement, our
implemented system, called ACE1, creates plausible paraphrases
of the sentence generated using the ontology and presents them to
the user as possible canonical forms of their original statement. If
new terms appear in the statement, ACE will suggest to the user
possible extensions to the ontology that incorporate the new
terms. To generate the plausible paraphrases, the system makes
use of a parser and a beam search of expressions within the
ontology. Our implementation draws from ontologies in OWL
[OWL, 15], but can easily be applied to other mark-up languages,
such as RDF schemas.
Our work extends the TRELLIS annotation tool that enables users
to express their analysis of possibly contradictory information
sources [Gil and Ratnakar, 8]. In TRELLIS, each statement in the
analysis is formulated in free text, and linked to other statements
through a set of domain-independent formal constructs for
argumentation, expressed in a semantic markup language.
TRELLIS is an interactive tool that helps users annotate the
rationale for their decisions, hypotheses, and opinions as they
analyze information from various sources. ACE, described in this
paper, extends TRELLIS by helping users to formalize the text
statements incrementally according to a domain ontology that can
be extended during this interaction.
The main contributions of this work are:

• an implemented annotation tool that allows the user to
create formal annotations incrementally by interacting
with paraphrases and without having to read the
annotation in its formal language.

• the use of search techniques in an ontology to provide
plausible fragments of a formal annotation that match
the user’s terms.

In the next section we provide a short overview of the TRELLIS
system, followed by a detailed example of using ACE to make
statements more formal and more amenable to matching. We then
present a preliminary evaluation to explore the contributions of

Copyright is held by the author/owner(s).
WWW 2004, May 17–22, 2004, New York, New York, USA.
ACM 1-58113-844-X/04/0005.

1 Annotation Canonicalization through Expression synthesis.

455

mailto:blythe@isi.edu
http://www.acm.org/class/1998/
http://www.acm.org/class/1998/
http://www.acm.org/class/1998/

the different technologies in ACE to the task of matching related
statements. We end with a discussion of the system and a
comparison to related work.

2. OVERVIEW OF TRELLIS
In a wide range of decision-making tasks, such as choosing a
vacation destination, family history research or design decisions,
the decision maker must keep track of a number of information
sources and maintain a succinct description of each one as well as
a record of how they are combined to support various
conclusions. The goal of TRELLIS is to enable users to create
annotations of their analysis of alternative sources of information
as they make a decision or reach a conclusion based on their
analysis. Once this rationale is recorded, it can be used to help
users justify, update, and share the results of their analysis. Users
need support after they have made a decision, reached a
conclusion, or made a recommendation, since they are often
required to: 1) explain and justify their views to others, 2) update
the decision in light of additional information or new data, 3)
expose the intermediate products of the final recommendation to
others that may be analyzing related information to make similar
decisions.
A statement in TRELLIS is a piece of free text information or
data relevant to an analysis. A statement may have been extracted,
summarized, or concluded from a document.

For example, the following news item might be summarized with
the statement “West Ham may sign Marcus Bent”:

West Ham boss Glenn Roeder is bidding to end the club's
Premiership woes with the signing of Ipswich striker
Marcus Bent in the new year, according to a report.
Ipswich had originally stamped a £3m price tag on the front
man. But now the club looks set to drop to £2m to bring in
money for manager Joe Royle's January signings,
according to the Sun newspaper.

Other summaries are also possible, depending on what the user
views as salient information in the text.
TRELLIS helps the user to construct an argument for or against
some conclusion by combining statements like these with a set of
standard constructors such as ‘is supported by’, and ‘in contrast
with’. Figure 1 shows an application of TRELLIS to analyze a
potential transfer in a sports domain. On the left hand side, the
user provides the conclusion of the argument and lists sources,
which may have live URLs, and statements based on the sources.
On the right side, the user has constructed an argument in support
of the conclusion from the statements. More details on TRELLIS
can be found in [Gil and Ratnakar, 9].
Since the statements in TRELLIS are represented in free text,
there is limited opportunity to provide inferential support or to
locate related statements and analyses from other users who may
use different phrasing. ACE, described in this paper, extends
TRELLIS by helping users to formalize the text statements
incrementally according to a domain ontology expressed in OWL.

Figure 1: TRELLIS is used to evaluate the likelihood of a possible event in a sports transfer domain.

.

456

2.1 Scenario
We illustrate ACE with the scenario used above, drawn from
professional sports. Teams often sign players amidst controversy
and rumors, reflected by press articles with dissenting views as
well as many on-line discussions of opinionated fans. Here, a
user may want to annotate a certain news item, for example with
his conclusion reached after reading it that a certain team is very
likely to sign a certain player. Consider a conclusion, for
example, that a particular football club, West Ham, wishes to sign
attacking players who are currently playing in the top league in
that country, the English Premier League (EPL).
Two users may express this same conclusion using two quite
different statements, for example “West Ham are targeting
strikers from the EPL” and “WHU prefer forwards who play in
the Premier League”. It is not our aim to match pairs of phrases
like these in all cases ― such a task would require a deep
understanding of the sentences that is beyond the state of the art.
However, even partial reformulations of the sentences would be
useful if they help expose their similar meanings. This will
improve the likelihood that a search engine can detect the
similarities of both analyses. Thus, ACE’s task is to suggest
reformulations of a concise text statement that conform as closely
as possible to the desired ontology or schema.
ACE brings together four techniques to help with this task:

• First, Term Replacement performs a substring match on
the sentence against the terms defined in the ontology and
suggests re-writing specific terms with their canonical
values. For example, in the second sentence above, the
tool might suggest to replace “forwards” with “strikers”
based on the known synonyms of that class.

• Next, the Parser generates information about the sentence
that can help simplify it, for example to find determiners
or passive verbs.

• Next, the Expression Composer makes use of the
ontology again to search for plausible compositions of
relations and classes that can link the matched terms.

• Finally the user can create new terms in the ontology at
any time in the process. To do this, the user highlights a
word in the current annotation and chooses to define it as a
new term. A tree widget allows the term to be placed
within the hierarchy, and it is then available to all the
other modules. For example, the user may choose to add a
new team or a new kind of player with this tool.

We describe the first three techniques in order below. Figure 2
shows the architecture of ACE.
Our design of ACE is guided by two principles. First, we aim for
an interactive system that leaves the user in complete control of
the process. At each step, ACE makes suggestions to the user

rather than reformulating the sentence automatically. This
process may be partial, leaving part of the sentence unconverted
and generating an annotation that includes some text as well as
some expressions generated in the markup language. Our second
design principle is to use the component modules, such as the
parser and expression composer, in ways that are robust to the
potential failures of the modules on free text. For example, the use
of the parser is robust in the sense that reformulations can be
suggested even if the tool fails to parse the sentence or returns an
incorrect parse.

User

UI
Annotation

(text)

Suggested
replacements

Parser

Parsed
Annotation

Ontology

Term
Replacement

Expression
Composer

Create
new terms

Figure 2: ACE architecture
In this section we discuss the scenario described earlier: two
statements are entered in a sports domain: “West Ham are
targeting strikers from the EPL” and “WHU prefer forwards who
play in the Premier League.” We show how they can be mapped
to the same partially formalized expression, in which parts of the
original text have been re-expressed within the ontology and parts
remain as free text. Figure 3 shows the suggestions that are made
after the term-replacement step, and Figure 4 shows the
suggestions that result from the latter steps. In the first step,
synonyms for simple terms in the ontology are replaced using a
sub-string match. This step contributes to putting the sentence in a
regular form, but another purpose is to confirm some of the
entities in the domain with the user. Next, the tool attempts to
parse the sentence if possible, to remove words that are not
processed when finding candidate formal statements. Finally we
search for plausible compositions of relations and terms in the
ontology that match terms and other words found in the user's
sentence. Below we describe these steps in detail.

Figure 3: ACE suggests primitive term replacements in the text based on the underlying ontologies.

457

Figure 4: After primitive terms have been verified, ACE suggests reformulations of the original text through the Expression Composer.

The phrases are automatically generated from paths in the ontology. Choosing a path can help to disambiguate the text, for example
‘Striker from the Premiership’ could be replaced either with ‘Striker plays-for a team that competes-in Premiership’ or ‘Striker is-a-citizen-

of a country that has-league Premiership’.

2.2 Term Replacement
In the first step, synonyms for simple terms in the ontology are
replaced using a substring match. While this step contributes to
putting the sentence in a regular form, another purpose is to
confirm with the user some of the known entities from the domain
ontology found in the sentence. The suggested term replacements
shown in Figure 3 are generated from the ontology in Figure 5,
using hand-coded synonyms augmented by synonyms suggested
by WordNet [Fellbaum, 6]. In our ongoing example, when the
user confirms the three substitutions, the tool can continue in the

knowledge that the sentence contains a particular team (West
Ham), a generic striker which is a subclass of player, and an
instance of a league (the Premiership). Relations and event
templates in the ontology are typed, and this information about
domain entities will be used to search for compositions of events
and relations that match those types. The information is also used
to aid the next step, parsing the sentence, by replacing compound
terms that the parser may not recognize with generic pronouns
that are easier to parse.

458

person

manager

player

West Ham

team

striker

midfielder

defender

keepercountry

league

David James

(synonym: forward)

(synonym: the hammers)

winger

plays-inin
plays-for

citizen-of

plays-for

manages

Figure 5: Fragment of the soccer ontology showing some of the suggested terms and their relationships. Each relation has a named

inverse, so that paths built by the expression composer can traverse links in either direction

2.3 Parsing to Improve Sentence-Level
Matching
ACE makes use of a parse of the sentence, if one can be made, to
improve the power of term matching and expression search by
making the sentence structure more simple. For example, words
identified as determiners are removed during matching and re-
inserted in the suggested reformulations, for instance in the
sentence “They want two strikers”, the word “two” will be ignored
during matching. The same approach can be taken with negation.
For example, in “Liverpool did not sign Ronaldo”, the parser
allows us to perform matching on the sentence without the
negation and re-insert it in the re-formulated version suggested to
the user.
As another example, conjunctive sentences can be split up and
treated separately. For instance the sentence, “They want two
strikers but have limited funds” can be treated as “They want two
strikers” and “They have limited funds”. The parse also identifies
subject, object and verb information in the sentence and noun
plurality. This information is used in matching of event templates,
described below. We currently use a probabilistic parser available
from the JavaNLP project [Klein and Manning, 12] that provides
a tree-structured parse. For example, the parse of the sentence
above is shown in Figure 6.

2.4 Expression Composer: Searching to
Suggest Compound Expressions
Finally we search for plausible compositions of relations and
terms in the ontology that match terms and other words found in
the user's sentence. A forward beam search is made through the
space of valid compositions of expressions, made up of relations,
classes, instances and event templates. The search returns the
shortest expressions that include a set of requested words,
possibly including synonyms for the terms. It then generates a
sentence encoding the expression for the user to consider. If no
expressions match all the requested words, paths are used that
match are subset of the words, weighted according to how many
words are matched and whether synonyms are used. This
approach was originally applied to help users build complex

expressions of problem-solving knowledge, as described in
[Blythe, 2].
For example, in the sentences above, matched terms include
“striker”, a kind of player, and “the Premiership”, an instance of a
league. Since the ontology includes the facts that players play for
teams and that teams are organized in leagues, one suggestion the
tool makes is to replace strikers from the EPL with strikers who
play for a team that plays in the EPL. If there are several such
paths linking the terms in the ontology, a number of the shortest
paths will be suggested. Figure 4 shows the options that are
generated from a small ontology for the example sentence “WHU
prefer forwards who play in the Premier League” after term
replacement.

Figure 6: An off-the-shelf parser can help identify compound
sentences and cardinality.

Notice that the system is disambiguating the text. For example,
the phrase “players from the Premier League” might refer to
players who play in the premier league now, or who have been
transferred from there, or who were born in the same country. If
these relations are captured in the ontology, they will be presented
to the user as alternatives to choose from.

459

Users can also add terms to the ontology by selecting a portion of
the statement and choosing where the new term should be inserted
in the class hierarchy. Currently only classes are added; instances
and relations will be included in future versions.
The expression composer represents a different and
complementary approach to the term replacement module. The
latter takes its lead from the user's sentence, and will not suggest
to introduce a term unless there is at least a substring match with
the sentence. The expression composer, on the other hand,
performs search in the domain ontology based on the introduced
terms, using the input sentence only to weight the results.
Although this can sometimes produce results that are surprising to
the user, one advantage is that terms in the ontology that might be
closely related to the concepts the user is expressing are likely to
be presented even though they do not have a surface match with
the user's chosen words. Similarly, since the composer does not
directly use the words in the sentence, it can make suggestions
even if few or none of the words in the sentence are recognized
apart from the matched terms.

3. DISCUSSION

We have described ACE, a tool to help users create document
annotations that may include complex expressions based on an
underlying ontology. ACE uses off-the-shelf parsing and a beam
search in order to suggest compound expressions from an
underlying ontology that may match the user’s free text input.
The system is designed to be robust, allowing partial
formalizations of the annotation and not relying on a successful
parse of the user’s input.

3.1 Related Work

Annotea [Kahan and Koivunen, 11] provides an open framework
for RDF-based web annotations. Annotea is neutral about the user
interface and the work we describe is complementary, showing
how users can create complex formal annotations with an
interactive user interface. An interface integrated with Amaya
[Amaya, 1] is provided that focuses on attribute-based
annotations. In contrast, ACE helps users create quite complex
expressions involving compositions of relations.
Melita [Ciravegna et al., 4] is an interactive annotation tool that
makes use of a separate training phase to learn annotation rules
that are used to make suggestions to user for subsequent texts.
The rules map from the document text itself into terms within the
ontology that fill pre-defined overall document patterns (for
example a talk at some time and location). Like Melita, S-
CREAM is based on the information extraction component
Amilcare [Handschuh et al., 10] as is MnM [Vargas-Vera et al.,
20]. Both learn knowledge-extraction rules to suggest annotations
to the user. However, none of these tools suggest compound
expressions based on the ontology, as our system does using
search, and therefore they can only map the text to pre-defined
structures.
Other researchers have used parsers to process short sentences in
order to enter information in a knowledge base. For example,
Chklovski [Chklovski, 3] uses the Link Grammar parser [Sleator
and Temperly, 18] to create a sentence ‘signature’ which, among
other things, removes determiners and closed-class words. All

subsequent processing is then performed on signatures. In
contrast, we use both the parse and the original sentence. The
parse is used to modify the way the expression composer is used,
while features of the original sentence, such as determiners, are
restored when suggestions are made. It would be possible in
principle to use signatures with our approach, and we plan to
investigate this.

3.2 Discussion and Future work

The use of search is central to our approach and this affects how
well ACE scales. Our experiences in a military planning domain
[Blythe, 2] indicate that the tool scales well as the ontology size
increases. Here, the ontology contains around 100 concepts and
several hundred relations but the search is typically completed
within a few seconds, adequate for interactive work. However, the
current search approach does not scale well with the length of the
smallest matching expression, since in the worst case it considers
an exponentially growing number of candidates. In practice, we
use a small beam of about 20 candidate examples and run the
search with a time limit of 10 seconds of real elapsed time in this
domain, returning without a match if none can be found within
the time limit.
We are currently investigating a dynamic programming technique
that improves on this performance. This technique uses a hyper-
graph whose nodes correspond to the data types in the domain and
each of whose links corresponds to a set of relations, linking a set
of input nodes to an output node the input nodes match the
relations’ domain, and the output node is included in their range.
On each iteration, the algorithm stores new candidate compound
terms at each node by following the links and using the terms
developed in the previous iteration. The approach is complete and
will guarantee to find the smallest solution. It is more efficient
than the beam search we have used previously because it
facilitates aggregating terms to reduce the search space, as well as
other pruning techniques. We have implemented this approach
within ACE and are exploring the time-space tradeoffs.
In our experiences, ACE frequently finds a desired match as one
of a small number of suggestions. We plan user evaluations in
several domains to test the generality of the results. The names
used for relations in an ontology affect both the matches returned
and how understandable the users find their descriptions, so we
will evaluate both with ontologies designed by ourselves and by
others. The tool can be used with any OWL ontology, and we
have encouraging initial results with the planning domain, that
uses terms defined by several different groups.
One area for future work is to gain a better understanding of the
behavior of the system with a small ontology, or with a shallow
ontology with fewer than usual relations but many instances, or
with an ontology built for a related domain. As communities of
users begin to use TRELLIS, we also intend to explore analyses
that bridge two or more ontologies and form a link between the
respective communities. We are also using a variant of the
approach to provide guidance to a task management system that
supports an office assistant tool, with a growing ontology
designed by several groups in collaboration.
Another direction is to make greater use of NLP tools during
reformulation of annotations, including WordNet [Fellbaum, 6],
stemmers [Porter, 16] and parsers [Klein and Manning, 12]. While
ACE currently uses synonyms provided by WordNet to improve
its matches during search, further improvements may be possible

460

using a word’s gloss or a semantically enhanced version such as
Extended WordNet [Mihalcea and Moldovan, 14]. The
existing parse of the original annotation can also be used more
fully, for example matching expressions can be modified using
the parse to conform more closely to the user’s original
expression.

3.3 Contributions
This paper makes the following contributions:

1. We take a closed-loop approach to the interactive
extension of ontologies in the context of a task that uses
them, in this case an annotation task. Previous work on
ontology editors [Gennari et al., 7, McGuinness et al., 13]
assumes that the user’s sole task is to extend the ontology,
leaving their purpose and use outside the reach of the
editors. Such an open-loop approach makes it hard to
ensure that the final ontology will be suitable for its
purpose.

2. We take a more flexible approach to controlled grammar
interfaces, where the user provides free text input that is
matched to the grammar. This simultaneously lowers the
barrier for users to enter statements in the grammar and
allows a partial match, where some input is matched and
some remains as free text. There is an incremental payoff
for the user’s effort invested in formalizing statements.
Previous approaches are either completely formal
[Gennari et al., 7, McGuinness et al., 13] or they are
completely informal, using unprocessed text [Stork, 19,
Singh and Barry, 17].

We also take a more dynamic approach to controlled grammar
interfaces, where the grammar is generated from ontologies that
the user continues to extend. Previous work on controlled
grammars assumes that the user’s input must comply with a pre-
engineered grammar that is to be adopted as a standard, e.g.
[Wojcik, 21].

4. ACKNOWLEDGMENTS

We are grateful to Tim Chklovski for useful discussions of this
work and his comments on draft versions. Varun Ratnakar
implemented the interface and integrated the tool with Trellis.

5. REFERENCES

[1] Amaya 03. http://www.w3.org/Amaya.

[2] Blythe, J. Integrating expectations from different sources to
help end users acquire procedural knowledge. Proceedings of
IJCAI’01 (Seattle, WA, August 2001).

[3] Chklovski, Y., Using Analogy to Acquire Commonsense
Knowledge from Human Contributors, Ph.D. Thesis, MIT
Artificial Intelligence Laboratory technical report
AITR-2003-002, 2003.

[4] Ciravegna, F., Dingli, A., Petrelli, D. and Wilks, Y., User-
System Cooperation in Document Annotation based on
Information Extraction. Proceedings of EKAW’02. (2002).

[5] Dill, S., Eiron, N., Gibson, D., Gruhl, D., Guha, R., Jhingran,
A., Kanungo, T., Rajagopalan, S., Tomkins, A., Tomlin, J.,
and Zien, J. SemTag and Seeker: Bootstrapping the Semantic
Web via Automated Semantic Annotation, Proceedings of
WWW12, Budapest, 2003.

[6] Fellbaum, C., Ed. WordNet, an Electronic Lexical Database,
MIT Press, 1998.

[7] Gennari, J., Musen, M., Fergerson, R., Grosso, W., Crubezy,
M., Eriksson, H., Noy, N., Tu, S. The Evolution of Protege:
An Environment for Knowledge-Based Systems
Development International Journal of Human-Computer
Studies, 58(1), 2002.

[8] Gil, Y. and Ratnakar, V. Trusting Information Sources One
Citizen at a Time. Proceedings of ISWC’02. (2002a).

[9] Gil, Y. and Ratnakar, V. TRELLIS: An interactive tool for
capturing information analysis and decision making.
Proceedings of EKAW’02. (2002b).

[10] Handschuh, S., Staab, S. and Ciravegna, F., S-CREAM:
Semi-automatic CREAtion of Metadata. Proceedings of
EKAW’02. (2002).

[11] Kahan, J. and Koivunen, M., Annotea: An Open RDF
Infrastructure for Shared Web Annotations, Proceedings of
WWW10, Hong Kong, 2001.

[12] Klein, D. and Manning, C. Fast Exact Inference with a
Factored Model for Natural Language Parsing. Advances in
Neural Information Processing Systems 15 (NIPS 2002),
2002.

[13] McGuinness, D., Fikes, R., Rice, J., Wilder, S. The
Chimaera Ontology Environment, Proceedings of AAAI
2000.

[14] Mihalcea, R. and Moldovan, D. eXtended WordNet:
Progress Report, in Proceedings of NAACL Workshop on
WordNet and Other Lexical Resources, Pittsburgh, PA,
2001.

[15] OWL 03. http: //www.w3.org/TR/owl-features/.

[16] Porter, M., An algorithm for suffix stripping, Program,
14(3) :130-137.

[17] Singh, P. and Barry, B. Collecting Commonsense
Experiences, Proceedings of KCAP’03, 2003.

[18] Sleator, D. and Termperley D., Parsing English with a link
grammar, Proc. International Workshop on Parsing
Technologies, 1993.

[19] Stork, D. The Open Mind Initiative, IEEE Expert Systems
and Their Applications, May/June 1999.

[20] Vargas-Vera, M., Motta, E., Domingue, J, Lanzoni, M.,
Stutt, A. and Ciravegna, F. MnM: Ontology Driven Semi-
automatic and Automatic Support for Semantic Markup,
Proceedings of EKAW’02. (2002).

[21] Wojcik, R. The Boeing Simplified English Checker, 2002,
http://www.boeing.com/assocproducts/sechecker

461

	INTRODUCTION
	OVERVIEW OF TRELLIS
	Scenario
	Term Replacement
	Parsing to Improve Sentence-Level Matching
	Expression Composer: Searching to Suggest Compound Expressio

	DISCUSSION
	Related Work
	Discussion and Future work
	Contributions

	ACKNOWLEDGMENTS
	REFERENCES

