
Optimization of HTML Automatically Generated by
WYSIWYG Programs

Jacqueline Spiesser
spiesser@cs.mu.oz.au

Les Kitchen
ljk+www2004@cs.mu.oz.au

Department of Computer Science and Software Engineering
The University of Melbourne
Parkville, Vic. 3010, Australia

ABSTRACT
Automatically generated HTML, as produced by WYSIWYG pro-
grams, typically contains much repetitive and unnecessary markup.
This paper identifies aspects of such HTML that may be altered
while leaving a semantically equivalent document, and proposes
techniques to achieve optimizing modifications. These techniques
include attribute re-arrangement via dynamic programming, the use
of style classes, and dead-code removal. These techniques produce
documents as small as 33% of original size. The size decreases
obtained are still significant when the techniques are used in com-
bination with conventional text-based compression.

Categories and Subject Descriptors
E.4 [CODING AND INFORMATION THEORY]: Data
compaction and compression; H.3.5 [INFORMATION
STORAGE AND RETRIEVAL]: Online Information Services—
Web-based services; H.5.4 [INFORMATION INTERFACES
AND PRESENTATION]: Hypertext/Hypermedia; D.3.4
[PROGRAMMING LANGUAGES]: Processors—Optimization,
Parsing

General Terms
Performance, Algorithms

Keywords
HTML optimization, WYSIWYG, dynamic programming, Haskell

1. INTRODUCTION
Major software vendors have exploited the Internet explosion,

integrating web-page creation features into their popular and com-
monly used products to increase their perceived relevance. Knowl-
edge of HTML is no longer necessary to create a web page; users
can create a document in Microsoft Word or Microsoft Publisher
and these programs can then save the document into HTML form.

While these What You See Is What You Get (WYSIWYG) ed-
itors have had the benefit of opening the web up to an audience
broader than computer professionals and enthusiasts, and arguably
have allowed the Internet to take off to the extent that it has, such
ease comes at a price: The HTML markup generated by these ap-
plications is not of the same standard as hand-coded markup. It is
usually technically correct and in accordance with the Document

Copyright is held by the author/owner(s).
WWW2004, May 17–22, 2004, New York, New York, USA.
ACM 1-58113-844-X/04/0005.

Type Definition, but is also unnecessarily bulky and untidy. Just
saving a HTML document to MSWord format then using MSWord
to save it back to HTML form typically doubles the size of the
file. A large proportion of the blow-out may be due to the long
list of style classes included at the start of each document, many
of which are never used in the document—MSWord includes every
style in the normal template! The rest of the markup is littered with
proprietary, vendor-specific attributes and unnecessarily repetitive
attributes. For example, it is common for MSWord to put font for-
matting information on every cell in a table rather than factoring it
up to the row level (or higher). Both MSWord and FrontPage do
the same for paragraphs and, even worse, place font formatting on
paragraphs that do not contain any text at all!

The consequences of such bloated HTML are unnecessarily high
storage costs, transmission costs, download times, and browser ren-
dering times, paid for in varying degrees by service providers and
end users, in both money and time. The impact of HTML size on
these costs in not simple, because of factors like filesystem block-
ing and network protocol overheads. Still, it is obvious that exces-
sive HTML size has adverse effects across the board.

The aim of this work is to find ways to create the smallest seman-
tically equivalent document for any given HTML document, while
still preserving some good coding practice and being XHTML-
compliant wherever possible. We focus here on HTML generated
by WYSIWYG programs, since for such HTML the problem seems
to be most acute. However, as noted in Section 11, it would be of
interest to extend this work to a broader range of HTML generators.
Because the HTML under consideration is automatically generated
and fits the DTD, the parser need not be able to handle incorrect
HTML; it can be much less robust than the parsers used by web
browsers. This work investigates the effect of the following tech-
niques in reducing HTML document size, both individually and in
combination:

• general tidying-up of document, removal of proprietary tags,
folding of whitespace;

• exploitation of style classes to decrease document size;

• use of dynamic programming to find the best arrangement of
attributes for a document;

• removal of markup that has no effect.

355

2. OTHER WORK

2.1 Existing HTML Optimization Programs
Little work has yet been done in the area of HTML transforma-

tion with optimization of WYSIWYG HTML specifically in mind.
At the present moment there exist mostly programs which decrease
the size of HTML via more superficial methods, such as collaps-
ing whitespace, removing quotes around attribute values, remov-
ing non-W3C approved attributes, and removing closing tags when
they are not strictly necessary. Insider Labs’ Space Agent [10], and
VSE Web Site Turbo [20] are typical examples.

One of the better known HTML transformation programs is
HTML Tidy [17]. As the name suggests, Tidy mainly validates
and corrects HTML. On the optimization front, it will remove pro-
prietary attributes and factor in-line style out into classes, but will
not convert HTML attributes to style attributes. It has an option
to ruthlessly prune Word 2000 HTML, but does so at the expense
of semantics. Tidy does not remove unused attributes nor optimize
attribute placement.

The sparsity of work in the area of HTML transformation and
optimization led us to seek ideas and concepts from other fields.

2.2 Finding Structure Through Grammar
The most bulky aspect of a WYSIWYG HTML document is of-

ten the attributes applied to each element. This is also the most
open to change and re-arrangement while still preserving page se-
mantics. By finding “structure” within sets of attributes (that is,
groups often repeated on several elements) it may be possible to
factor them out and replace them with an identifier for that group.
HTML provides a very effective mechanism for doing this: style
classes.

Dictionary-based compression, such as Ziv and Lempel’s LZ78,
might seem well suited for the task. LZ78 [22] constructs a dictio-
nary online as it passes through and compresses the data, creating
longer and longer dictionary entries as longer repeated sequences
are found. However, this method was deemed unsuitable as HTML
elements must be considered a bag rather than a sequence, and
because it would provide sub-optimal performance on earlier el-
ements as it requires time to build a satisfactory dictionary.

Grammar-based compression algorithms initially seemed a bet-
ter proposition. Larsson and Moffat’s RePair algorithm [11] seemed
suitable, as it incrementally builds up structure by creating gram-
mar rules that merge adjacent pairs of symbols. These are stored
in a dictionary which can then be used to decode. The algorithm
seemed applicable to HTML: The dictionary could be formed of
style classes, and adjacent symbols in a sequence could be replaced
with subsets of a set of attributes.

RePair is extremely similar to Witten and Nevill-Manning’s Se-
quitur algorithm [14], but the RePair algorithm has the added ben-
efit of being offline: An offline algorithm should in theory pro-
vide much better compression, as attributes earlier in the document
would be compressed just as well as those occurring later. Neither
algorithm would be able to act optimally, however, as each HTML
element may have only one class attribute. Thus if a set of attributes
contained more than one possible optimization, only one could be
used.

Additionally, RePair’s space efficiency relies heavily on the use
of pointers, so that several data structures (a hash-table, heap and
linked list) may all point to the same object in memory representing
a character, or in this case an attribute, rather than duplicating it
three times over. As Haskell, our implementation language (chosen
for other reasons), lacks side-effects, such structure sharing would
be impossible and the algorithm would lose the space efficiency

that makes it attractive for text compression. These issues led us to
deem the algorithm unsuitable.

2.3 Compiler Optimization
As HTML is basically code, and the field of compiler optimiza-

tion of code is quite a mature one, it seemed likely that algorithms
from this field might be applied to HTML. Techniques such as loop
optimization quite obviously have no application to HTML opti-
mization as there are no loops to optimize, but removal of com-
mon subexpressions and especially removal of dead code [1] could
be applicable. In the end dynamic programming proved to be a
far better way of performing optimizations analogous to common-
subexpression removal.

2.4 Dynamic Programming
The 2001 ICFP programming competition [4] was a rich source

of ideas. There the task was to optimize a very simple, HTML-
like markup language as much as possible within 3 minutes. The
markup language used was extremely basic compared with HTML:
no document structure whatsoever, only some very simple, finite
text decoration. While HTML is greatly more complicated, many
of the basic ideas proposed by the contest entrants were transfer-
able.

By far the best and most useful of these ideas was dynamic pro-
gramming, a method used by many of the best entries including
the winner, Haskell Carrots [19]. The Haskell Carrots group rec-
ognized that the task was essentially an optimal parsing problem: a
renderer computes a display from a parse tree. So the job of an op-
timizer is to parse, and more so to find the best, cheapest parse tree.
The group used the Cooke-Younger-Kasami (CYK) probabilistic
parsing technique, mapping the cost of representing a particular
section of the parse tree to a probability for use by the algorithm.
Similar methods were also used by Tom Rokicki [18] and the Tycon
Mismatch team [3], amongst others.

Jurafsky and Martin [9] also describe the use of the CYK algo-
rithm, describing its applications in language processing. Aho and
Ullman also describe it, focusing more on the performance aspects
of the algorithm and finding it to be order n

3 time and n
2 space [2].

Amusingly, they state that it is doubtful that it will ever find practi-
cal use for these reasons!

While such time and space requirements do not, as Aho and Ull-
man suggest, rule the algorithm out altogether, they do mean that
it must be slightly modified to be practically usable. The large
sizes of the grammars and input documents often needed exac-
erbate these requirements. A common solution to this problem
is to modify the algorithm to do a beam search, eliminating less-
promising parses from each cell as it is constructed [9]. The beam-
search algorithm was first implemented by Lowerre in 1968 [12],
and is still in common use. The Carrots group used this beam
search/thresholding and also used an approximation of global thresh-
olding, which attempts to eliminate parses which are globally un-
promising rather than the locally unpromising ones eliminated by
beam thresholding. Both thresholding methods are discussed in
detail by Joshua Goodman [6], who gives a good account of their
pros and cons, and suggests some improvements to the general al-
gorithms.

3. APPROACH
Our approach has three main parts:

1. Build a scaffolding on which to add later HTML optimiza-
tion algorithms. The scaffolding consisted of an abstract syn-
tax tree (AST) to represent HTML, a parser and an unparser,
all implemented in Haskell (Section 4).

356

2. Investigate the effects of various ways of optimizing HTML.
The techniques implemented can be further divided roughly
as follows:

• Superficial but often quite effective “dumb methods”,
such as removing whitespace (Section 6).

• The use of style classes (Section 7).

• The use of dynamic programming to re-arrange markup
(Section 8).

• Standard compiler optimization techniques, in this case
dead-code removal (Section 9).

3. Investigate the results of combining the various optimiza-
tions, in comparison with and in addition to common text-
compression techniques (Section 10).

4. BACKGROUND

4.1 HTML Structure
There are several ways that the formatting in an HTML docu-

ment may be specified. It can be done by attributes, as in line 12 of
Figure 1. This, however, greatly limits the options for the appear-
ance of the document. Cascading Style Sheet (CSS) notation [21]
was introduced to provide more expressiveness. CSS notation can
be inserted into the document from an external style sheet, in the
header of the document (as in Figure 1), or on each individual ele-
ment (line 13). Header or external style can be linked to a partic-
ular element via style declarations for the element type (line 11),
style classes which are referenced by the element’s class attribute
(lines 14 and 15), or style classes referenced by the element’s id
attributes (line 16).

4.2 Parsing HTML
In order to reorganize the structure of an HTML document, it

must first be parsed into an abstract syntax tree. There were several
options available to do this.

One of the most immediately obvious options was to take the
parser from an open source browser, as such a parser should be very
robust and thus capable of handling incorrect HTML. The parsing
engine from the Mozilla browser [13] was considered. It immedi-
ately became clear that there was a disadvantage to this robustness:
the code becomes bloated and complicated in order to handle as
many possible cases of incorrect markup gracefully. We decided
that, within the scope of this work, dealing with such complica-
tions would hinder our investigation of the core issues in HTML
optimization.

Another possible parser was the HTML Tidy parser [16]. This
provided a good, simple API, and the code is much clearer. Unfor-
tunately, Tidy does not yet have much support for integrating style
into documents, which was central to the techniques that we wished
to implement.

In the end, the best option proved to be writing our own parser,
which allowed us to design our own AST to best fit the ways we
wished to manipulate the document. It also allowed us to inte-
grate CSS notation much more closely into the AST, and convert
between HTML attributes and CSS attributes. We chose to use
Haskell monadic-style parsing owing to its very simple, clear inter-
face.

4.3 Haskell
We chose to implement our algorithms in Haskell [15] (a poly-

morphically typed, lazy, purely functional language) mainly be-
cause we were drawn to the combination of power and simplicity

Table 1: Features of the test documents.

Doc. Generator DTD CSS Nesting
Size
(bytes)

1 MSWord loose yes no 126759
2 MSWord loose yes yes 63912
3 MSPub strict yes yes 21893
4 MSPub strict yes yes 21648
5 FrontPage loose yes no 45014
6 Excel loose no yes 330859
7 Excel loose yes no 23451

allowed by functional languages. Haskell code has the advantage
of being generally clearer, more concise and elegant than impera-
tive code, and additionally is strongly typed (thus when a program
type-checks correctly it generally runs correctly). Haskell code is
more easily extensible and re-usable on account of polymorphic
types and lazy evaluation [8].

The other main reason for our use of Haskell was the avail-
ability of Monadic Parser Combinators [7], which take advantage
of Haskell’s laziness and higher-order functions to provide an ex-
tremely simple yet powerful parser interface.

This allowed us to develop our parser and optimizer more quickly
than in a more conventional programming language. However, this
comes at a price: for the same task, as Haskell program will nor-
mally run much slower than a program written in say C. While our
Haskell implementation is the best choice for experimentation and
initial proof of concept, it would probably not be suitable for pro-
duction use.

5. THE TEST DATA
In order to discuss and evaluate various HTML optimizations,

there must first be some standard test data for which all the opti-
mization effects can be compared. The test documents used to eval-
uate and fine-tune the optimizer were carefully chosen to represent
the largest range of inefficiencies present in WYSIWYG-generated
documents. They were also chosen to present a range of different
document structures. However, the document types were restricted
to those for which we had access to the generator program, as it
is difficult to find such documents on the Internet without various
additions and modifications which cause them to violate the DTD.
The documents we had access to were generated mainly by Mi-
crosoft products: Word, Publisher, Excel and FrontPage. As this
bias towards the use of Microsoft products closely reflects real-
word usage patterns, it should not be considered too worrying. It
would be interesting to see how well the optimizations suggested
here can be extended to previously unseen patterns of HTML.

The most common sin committed by WYSIWYG HTML editors
is unnecessary repetition of style attributes. All of the generators
under consideration do this. Other bad practices observed include
Publisher’s use of a header style class for each ID, and Word’s prac-
tice of using header style which is more often than not rendered
superfluous by inline style attributes which overwrite it.

Table 1 profiles the seven test documents used throughout this
paper. (In this, and in all other tables, document sizes are given in
bytes.) All but the Publisher documents use the loose DTD, which
allows font elements. All but Document 6 use CSS notation: Doc-
ument 6 was generated by an earlier version of Excel which did not
support CSS. The nesting column refers to the overall structure of
the document. Nested documents have “narrow and deep” parse
trees, with individual elements having fewer children, but many

357

1 <html>
2 <head>
3 <style type="text/css">
4 P { font-size:12pt;}
5 P.special {font-style:italic;}
6 .bold {font-weight:bold;}
7 #134 {font-size:14pt;}
8 </style>
9 </head>

10 <body>
11 <p> size 12 text </p>
12 <p> green, size 12 text </p>
13 <p style="font-size:15pt; color:green;"> green, size 15 text </p>
14 <p class="special"> size 12, italic </p>
15 <p class="bold"> size 12, bold text </p>
16 <p id="134"> size 14 text </p>
17 </body>
18 </html>

Figure 1: Use of HTML attributes, and inline and header CSS style notation.

Table 2: Results of parsing and unparsing the input files.

Doc. Original size Parsed size % of original

1 126759 67567 53.3
2 63912 46870 73.3
3 21893 20569 94.0
4 21648 20801 96.1
5 45014 44825 99.6
6 330859 470641 142.2
7 23451 17692 75.4

descendants. Non-nested documents are “broad and shallow”, con-
sisting of structures such as a long series of paragraphs, or lists with
many items.

While this data set is quite modest, it is sufficiently representative
of this class of HTML documents for investigating the effects of our
proposed optimization.

6. PARSING, UNPARSING AND
PROPRIETARY ATTRIBUTES

Significant cleaning up of the document can occur during the
parse and unparse phases, avoiding many extra passes over the doc-
ument tree later on. The most basic but also highly effective savings
are found in the removal of unnecessary whitespace within and be-
tween elements and attributes. Browsers treat these multiple white
spaces as a single space, so it makes little sense to leave them in a
document.

The exclusion of empty DIV and SPAN elements (i.e., those
without any attributes) can also save some space. While these
rarely occur in nature, they are generated by the dynamic program-
ming optimizing algorithm (see Section 8.3). They can be removed
at a block level with no effect on the semantics of the document.

Microsoft includes many proprietary tags used to encode its
messy, unstructured WYSIWYG HTML. Many of these are unnec-
essary or redundant and can be safely removed without affecting
the look of the document, e.g., mso-font-charset, mso-generic-font-
family, mso-font-pitch, and mso-font-signature.

Table 2 shows the effect of parsing and unparsing of a docu-
ment on document size. Parsing has a profound effect on Word
documents (1 and 2), the worst offenders in terms of proprietary

style attributes, which to compound the problem are displayed in
a space-wasting manner. The very small difference in the size of
the Publisher documents (3 and 4) is most likely due to removal of
excess whitespace, as they use mostly W3C-approved markup. The
first Excel document, number 6, on the other hand, underwent a sig-
nificant size blow-out. This is due to the original document being
coded entirely without style markup, which is generally more bulky
than HTML attributes. For example, <center> is replaced with
<div style="text-align:center">. This bulkiness is
outweighed by the later savings that factoring style out into classes
affords.

7. STYLE CLASSES
Style classes were originally designed to allow for more com-

pact representation of style data, as commonly-used style tags can
be made a class, which is then all that appears within the body of
the HTML code. Unfortunately not all WYSIWYG programs use
classes in this manner. Microsoft Publisher, for example, includes
header style information for almost every ID in a document and,
the purpose of IDs being to act as unique identifiers of an element
in a document, this style data will not be reused and may as well be
inline. Significant space can be saved by substituting this into the
document and removing the header style.

However, the majority of HTML generating programs use classes
in more or less the proper manner. Microsoft Word classes, for ex-
ample, are used many times throughout the document, and thus
substituting them in significantly blows out the document size.

Unfortunately, correctly optimizing the document through use
of dynamic programming requires classes to be factored in as will
be explained in Section 8.7. The blow-out is still so large that it
offsets the gains of optimizing, however. The solution is to factor
in the classes then factor out the excess again once optimization has
occurred.

We initially considered doing this in quite a clever manner us-
ing grammatical compression techniques to find structure within
sets of attributes, factoring out only the most commonly used at-
tribute subsets. We came to the conclusion, however, that this was
an overkill. In the end we settled for the simpler method of fac-
toring whole attributes sets out into classes: if a set of attributes
already existed in the header style as a class, substitute that class
for the set of attributes, otherwise create a new class in the header
style.

The majority of the classes created were used many times over,

358

<td style="height:6.75pt; padding:0cm 5.75pt 12.25pt
5.75pt; border-bottom:solid white .75pt; width:116.2pt;
vertical-align:top; width:155; " colspan="2">

<p style="margin-bottom:3.0pt; font-family:Tahoma;
font-size:11.0pt; " lang="EN-AU"> text </p>

<p style="margin-bottom:3.0pt; font-family:Tahoma;
font-size:11.0pt; " lang="EN-AU"> more text </p>

<p style="margin-bottom:3.0pt; font-family:Tahoma;
font-size:11.0pt; " lang="EN-AU"> even more text </p>

<p style="margin-bottom:3.0pt; font-family:Tahoma;
font-size:11.0pt; " lang="EN-AU"> still more text </p>
</td>

Figure 2: An example of repetitive attributes (from Docu-
ment 2).

and even those used only once create an overhead of less than
10 characters each: add .cnum { } and class="cnum", and
remove style="". As these styles cross over between all the dif-
ferent elements, they are a more efficient representation than those
in a Word HTML or Tidy document.

When substituting style attributes for their classes, it is impor-
tant to merge them with the attributes already present rather than
just appending them to the beginning or end. Many browsers will
ignore not only duplicate attributes, but also any attributes occur-
ring after a duplicate.

Table 3 shows the effects of factoring classes into and out of the
test documents. As can be seen, just factoring repetitive attributes
out into classes reduced the size of all of the test pages by over
15% from the parsed file size. The greatest improvements are seen
in the files with the most repetition: Document 5 with its sequence
of paragraphs with near identical attribute sets, and Document 6
with its enormous number of similarly formatted table cells. If the
formatting is more diverse across the document then the gains are
not quite so large. Interestingly, Documents 3 and 4, generated by
Publisher, also show improvement when present classes are fac-
tored in, reflecting the earlier-mentioned use of header style for ID
elements.

8. OPTIMAL ATTRIBUTE PLACEMENT
One of the greatest sins committed by WYSIWYG HTML ed-

itors is the repetition of attributes that should be factored up to a
higher level. The example in Figure 2 is typical. As can be seen, all
four P elements share the exact same font formatting. It would be
much more efficient if the formatting were on the TD element in-
stead, avoiding the repetition. Achieving such a re-arrangement of
attributes was found to be possible, using dynamic programming.
An account of the process follows.

8.1 Heritable Attributes
The first observation that needed to be made is that some HTML

attributes are inheritable by child elements while others are not.
These will henceforth be referred to as heritable attributes. When
present on a parent element, such an attribute also applies to all
child elements unless overwritten by another copy of the attribute.
That this is the case is intuitive for attributes pertaining to font style,
for example. Table 4 contains a list of all of the heritable attributes.

The assumption underpinning the following dynamic program-
ming approach is that if the value of a heritable attribute on a par-
ent node applies to all of its child nodes, then it can also be said
that if all or even most of the children of a particular parent node

share the same value for a particular attribute, then this attribute
value can safely be moved from the child nodes to the parent node.
This assumption can be used to reduce the size of an HTML file
by replacing many instances of an attribute-value pair with a single
instance. The question then, is how to identify instances where it
may be cheaper to lift attribute values up to a higher level in the
parse tree (and, of course, how to define cheaper). In their paper
explaining their response to the 2001 ICFP programming competi-
tion [19], the winning Haskell Carrots group made the observation
that the optimization of markup is essentially a parsing problem,
specifically a probabilistic one. They mapped probability to the
cost of representing a particular fragment of the parse tree. The job
of an HTML optimizer is to construct the parse tree which gener-
ates the cheapest possible (thus the smallest) HTML document.

8.2 Cost
To be able to use dynamic programming to build up the least

cost parse tree, we first had to define the notion of cost, as ap-
plied to HTML elements and attributes. We chose to define cost as
the number of bytes needed to represent the particular snippet of
HTML under consideration. Thus a font attribute, for example, has
a cost of 4, and an inline style attribute containing the style infor-
mation to set the font to Ariel (style="font:Ariel;") costs
19 bytes. A DIV element costs 11 bytes: <div> </div>.

8.3 Dynamic Programming Algorithm
With costs defined for all of the HTML structures, a chart pars-

ing algorithm could then be applied to the parsed HTML docu-
ments. The problem lent itself best to bottom-up parsing, so a
variation loosely based on the Cooke-Younger-Kasami (CYK) al-
gorithm was used, with costs rather than probabilities to determine
the best parse.

The CYK algorithm (see [19]) is an inductive one, finding suc-
cessively longer and longer parses across a group of items by merg-
ing pairs of shorter parses. It operates in this mode until it has a
parse spanning the whole length of the group of items. To use the
algorithm a way needed to be found to merge two HTML elements
into a single node, thus parsing them. This was done by making
them both children of a DIV element, which could then take on any
attributes lifted up to a parent level. DIV elements are extremely
suitable as an empty DIV element has no effect on a document at
block level and can be removed when unparsing. A DIV element
with no attributes was given a cost of zero, representing the fact
that it does not form a part of the final document. The final DIV,
spanning all of the children of the previous parent node, could then
have its attributes merged with that parent node, removing this final
DIV.

8.4 Grammar
It remained to find a grammar for representing the possible, se-

mantically equivalent arrangements of attributes which the parsing
algorithm requires in order to construct the parse tree of DIVs. The
problem of using parsing techniques to optimize a parse tree is quite
separate from the parsing of the initial document to first create a
parse tree. Thus the grammar needed is not the DTD of an HTML
document but rather a way of representing equivalent arrangements
of attributes.

Construction of this grammar proved to be quite a problem as
the number of possible combinations of elements and attributes for
HTML is enormous—infinite, for all practical purposes. There was
no practical way of specifying all of the possible transitions be-
tween parents and children in a fixed, explicit grammar.

Instead, an abstract, pattern-matching style of grammar was first

359

Table 3: Effect of factoring style attributes out into classes (cin: classes factored in, cout: new classes factored out).
Doc. Original Parsed cin % orig. % parsed cin,cout % orig. % parsed

1 126759 67567 75761 59.8 112.1 50161 39.6 74.2
2 63912 46870 59084 92.4 126.1 33532 52.5 71.5
3 21893 20569 18770 85.7 91.3 15345 70.1 74.6
4 21648 20801 18826 87.0 90.5 15388 71.1 74.0
5 45014 44825 44851 99.6 100.1 30084 66.8 67.1
6 330859 470641 470641 142.2 100.0 295282 89.2 62.7
7 23451 17692 18051 77.0 102.0 18046 77.0 102.0

Table 4: Heritable attributes.
azimuth font-size list-style-type speak-numeral
border-collapse font-size-adjust orphans speak-punctuation
border-spacing font-stretch page speech-rate
caption-side font-style page-break-inside stress
color font-weight pitch text-align
cursor font-variant pitch-range text-indent
direction letter-spacing quotes text-transform
elevation line-height richness word-spacing
font list-style-image speak lang
font-family list-style-position speak-header

used to find all the possible parses for each individual attribute type
for a pair of elements. These possibilities could then be combined
with each of the possibilities for all of the other attributes to find all
of the possible parses for a pair of elements.

The grammar for individual attributes has three distinct cases:
both elements have the same value for the attribute, the elements
have different values for the attribute, or only one element has the
attribute.

In the case where both elements have the same value for the at-
tribute, there are two possible parses. Consider the following ex-
ample HTML markup:

<p style="color:red;"> red text </p>
<p style="color:red;"> red text </p>

The above can be parsed as either of the following:

<div>
<p style="color:red;"> red text </p>
<p style="color:red;"> red text </p>
</div

or

<div style="color:red;">
<p> red text </p>
<p> red text </p>
<div>

When the values for the attribute differ, there are three possible
parses. Consider:

<p style="color:red;"> red text </p>
<p style="color:green;"> green text </p>

The above can be parsed as any of the following:

<div>
<p style="color:red;"> red text </p>
<p style="color:green;"> green text </p>
</div

Table 5: Effect of applying dynamic programming optimiza-
tion.

Doc. optimized % orig. % parsed

1 57836 45.6 85.6
2 41198 64.5 87.9
3 15737 71.9 76.5
4 15815 73.1 76.0
5 28111 62.4 62.7
6 164030 49.6 34.9
7 16935 72.2 95.7

or

<div style="color:red;">
<p> red text </p>
<p style="color:green;"> green text </p>
<div>

or

<div style="color:green;">
<p style="color:red;"> red text </p>
<p> green text </p>
</div

Finally, when only one element has the attribute, the attribute
must remain on that element.

8.5 Effect of Applying Optimization
The results of applying such optimization over a whole docu-

ment can be seen in Table 5.
Document 6, the first Excel document, realises the greatest ef-

fect, as the majority of attributes on the majority of cells are the
same. The effect is smaller in relation to the original document than
it is in relation to the parsed document owing to the substitution of
CSS attributes for HTML, but this is what allows the optimization.
There is also a large effect on the FrontPage document, as it has
so many similar paragraphs. There is a good size decrease for the

360

Word and Publisher files, too. However, these documents are a little
more diverse in formatting so the effect is not so great.

8.6 Optimizing the Optimizer
Initially the algorithm was run across all the children of an ele-

ment, with a limit of ten possible parses in each cell of the parse
chart. Unfortunately the algorithm took far too long to run (many
minutes in some cases) and used enormous amounts of memory,
which would make it impractical for use in the real world. Two
different methods were used to remedy this problem.

The first was a divide-and-conquer approach to running the al-
gorithm on each set of child elements. Instead of running the algo-
rithm on all of the children of a particular element, we inductively
applied it to groups of ten child elements: first to the actual child
elements, and then to the best parse trees resulting from the appli-
cation of it to the groups of child nodes. This was done repeatedly
until a set of parse trees spanning all the children was found. The
advantage of this approach was that many parse options could be
removed from memory much earlier, needing only to be there for
the parsing of their group, rather than the parsing of the whole set
of child elements.

The other approach was to reduce the number of possible parses
stored in each cell. Was is really necessary to keep all ten of them?
It eventuated that only five, or even three need be kept, with virtu-
ally no increase in the size of the resulting parse tree. Table 6 shows
the resulting run-times and document sizes for lower thresholds.
(These and other run-times quoted are on a Celeron 466 processor
with 256MB RAM, running RedHat 9 Linux, using the Glasgow
Haskell Compiler, (ghc) [5].) Only a couple of parse trees were
smaller for larger cell thresholds, a fact far outweighed by the dra-
matically reduced run-times resulting from smaller cells.

Note that these run-times are for our experimental Haskell imple-
mentation. Experience suggests that an implementation in C would
run about ten times faster.

8.7 Problems and Improvements
Upon applying the algorithm, we immediately discovered that

many documents and segments of documents did not display as
they should. There turned out to be several reasons for this.

One factor affecting the appearance of documents was the prece-
dence of the various types of style attributes applied to particular
elements. Inline style overrides style specified by an id attribute,
which in turn overrides style specified by a class attribute. WYSI-
WYG editors often take advantage of this by using overall style
classes and then overriding them at a local level with inline style.
In addition, each element may have only one class attribute; any
extras are ignored. This means that it is important to factor all style
classes into the document, onto their associated element, so that the
correct style still applies after optimization is applied.

Another problem is that the optimizing process leaves DIV ele-
ments in places where, according to the DTD, they should not be.
Most of these occur as children of TABLE or TR elements. Most
browsers will simply ignore these erroneous elements and any at-
tributes they may have, removing vital formatting information. The
solution was to apply any attributes sitting on DIV elements in be-
tween back down to the child nodes, once a parse tree of any chil-
dren had been constructed and merged with the parent node.

9. REMOVING DEAD MARKUP
A common form of compiler optimization of code is dead-code

removal. Dead code is code that is not reachable by running the
program—it will never be executed and can thus be safely removed.
Removal of dead code from a program involves the construction of

Doc 1 Doc 2 Doc 3 Doc 4 Doc 5 Doc 6 Doc 7
0

50

100

150

%
 o

ri
gi

na
l s

iz
e

Orig
parsed
c
d
cd
o
oc
od
ocd

Figure 3: Summary of Effects produced by all optimizations
(c: classes factored out, d: dead markup removed, o: dynamic
programming). Results are given as a percentage of the original
document size.

a directed graph representing the execution of the program, and
then removing the unreachable sections.

Dead code has an analogue in HTML: attributes that will never
be applied to any element. Most common are font formatting at-
tributes with no text children (see Table 7 for a list of such ele-
ments). Microsoft Word in particular does not distinguish between
empty paragraphs and those with text in them. For example:

<p class=MsoNormal>
</p>

<p class=MsoNormal>
text</p>

The actual removal of dead elements is trivial as there already
exists a directed graph in the form of the document parse tree. It is
easy to determine if a node has no text descendants, in which case
its text formatting attributes can be removed.

Table 8 shows the effects of applying dead-markup removal to
the documents. As can be seen, dead-markup removal has an effect
only on HTML documents generated by programs which are prone
to the problem, namely MSWord and FrontPage. These documents
can have their size decreased by as much as 10–15% over the parsed
size. Conversely, the effect on Publisher and Excel-generated doc-
uments is negligible. In fact, it has a negative effect for Publisher
files in the case where classes are factored out, because it results
in the need for some extra classes when some dead attributes have
been removed from sets which fit into other classes.

10. DISCUSSION

10.1 Combining the Optimization Techniques
As can be seen from Table 9 and Figure 3, dynamic program-

ming achieves the greatest decrease in document size over the orig-
inal document: an average of 37.2%. This was followed by fac-
toring classes out, with an average reduction by 33.4%, and finally
dead-markup removal with an average reduction by 12.2%. These
averages include both the documents for which a method worked
well and the documents for which it did not, and so therefore can

361

Table 6: Execution times (in seconds) and resulting document sizes (in bytes) for thresholds of 3, 5 and 7.

Threshold: 3 Threshold: 5 Threshold: 7
Doc. size time size time size time

1 57840 55 57836 74 57836 101
2 41279 25 41198 34 41178 45
3 15795 10 15737 14 15737 20
4 15873 10 15815 14 15815 20
5 28111 30 28111 46 28111 70
6 163830 235 164030 727 163074 515
7 16935 10 16935 11 16935 14

Table 7: Style attributes which apply to visible text.

font lang text-shadow
font-family line-height tab-stops
font-size font-size-adjust text-transform
font-style font-stretch
font-weight text-indent

Table 8: Effect of dead-markup removal.
Doc. dead % orig. % parsed

1 65826 51.9 97.4
2 42477 66.5 90.6
3 20522 93.7 99.8
4 20784 96.0 99.9
5 38339 85.2 85.5
6 482178 145.7 102.5
7 17692 75.4 100.0

be considered as aceptable results. For example, when only the
MSWord and FrontPage documents are considered, dead-markup
removal actually provides a decrease of 32.1%. These figures all
include the average 10% decrease resulting from parsing the docu-
ment.

When the different optimizations are combined, the aggregate re-
sult is not as effective as the sum of all of its parts, although the ag-
gregate result exceeds any one of them individually. Thus, applying
all three optimizations provides only an extra 15.6% decrease over
only factoring out classes and 10.5% over dynamic programming.
This is because, to some extent, the optimizations overlap in the
attributes they affect: much need for dead markup removal is elim-
inated as dead attributes are lifted to parent nodes along with their
siblings. Similarly, optimization decreases the amount of inline
style, rendering the effect of switching from inline style to header
style classes smaller.

10.2 Reduction in Markup
The optimizations proposed here apply only to the markup; the

text content of the HTML document is unchanged. So, in the results
presented so far, the effectiveness of the optimizations is to some
extent masked by the constant text component. To better isolate
the effect of the optimizations, the parsed documents were com-
pared with their optimized counterparts with all text and comments
stripped out of both, leaving only the markup. Table 10 shows the
results. The average size of the optimized documents was a re-
spectable 58.3% of the parsed documents. However, the results
were much better for some of the documents: around 32% for the
FrontPage and one of the Excel documents, and around 53% for the

two MSWord documents. The overall average is heavily skewed by
the result for the last document, which contains little style informa-
tion to optimize. Note also that this comparison is based on the
parsed documents. For most documents, the reduction in markup
with respect to the original would be even greater (see Table 2).
However, parsing is required in order to separate text content from
markup, and so it is convenient to measure the markup reduction at
this point, in terms of the parsed document. It would be possible
relate this back to the original unparsed markup, but that would be
more trouble that it is worth.

10.3 Comparison with Text Compression
So, is it worthwhile it to perform all of these relatively costly

optimizations on HTML documents when instead they could just
be compressed with a conventional text compression algorithm?
Table 11 compares the results of compression alone on the orig-
inal HTML with the results of compression after our optimiza-
tion. Clearly, these documents are highly redundant, and compress
very well using conventional text-based compression techniques.
In fact, the size reduction from compression alone is greater than
the compression obtained by our optimization techniques on their
own. (See Table 9.) This is hardly surprising, since our opti-
mization techniques leave the textual content of the document un-
changed, and leave the markup (tags and attributes) spelt out in full,
all of which can be compressed as text. What is of interest, how-
ever, is the combination: Compressing the result of our optimiza-
tions gives a file size significantly smaller than can be achieved by
compression alone. There is an average 21.3% decrease for the
optimized files for gzip and an average 16.5% decrease for bzip2.

Both techniques remove redundancy from the documents, and
there is a certain overlap between the two: The optimized docu-
ments compress less well than the originals, because the optimiza-
tion does remove some textual redundancy. See Table 11. Like-
wise, the effects of our optimizations are reduced after compres-
sion, because some of the redundancy removed by our optimization
could also have been removed by compression. Compare Tables 9
and 11. However, there remains some “higher level” redundancy
which can be removed by our optimizations, but which cannot be
removed by mere text-based compression. Hence, combining the
two techniques, optimization followed by compression, can still
produce further worthwhile size reductions.

Which combination of text compression and HTML optimiza-
tion would be best in a particular situation obviously depends on
the interaction of a number of factors and trade-offs, for example,
storage and computational load on server and client, transmission
bandwidth and costs, latency, and frequency of access.

Table 12 shows the relative compression and decompression costs
for gzip and bzip2. It seems that, of text-based compression tech-
niques, gzip is likely to be more useful for the purpose of compress-

362

Table 9: Summary of the effects produced by all optimizations (c: classes factored out, d: dead-markup removed, o: dynamic
programming). Results are given as a percentage of the original document size.

% of original size
Doc. original parsed c d cd o oc od ocd

1 126759 53.3 39.6 51.9 39.3 45.6 34.1 45.4 33.8
2 63912 73.3 52.5 66.5 48.9 64.5 48.9 59.8 45.5
3 21893 94.0 70.1 93.7 70.6 71.9 68.9 71.5 68.5
4 21648 96.1 71.1 96.0 71.6 73.1 70.1 71.0 69.7
5 45014 99.6 66.8 85.2 60.9 62.4 54.9 62.3 54.7
6 330859 142.2 89.2 145.7 89.2 49.6 49.6 49.6 49.6
7 23451 75.4 77.0 75.4 76.3 72.2 72.2 71.7 71.5

Average 90.6 66.6 87.8 65.3 62.8 57.0 61.1 56.2

Table 10: Effect of optimization on the documents with text and
comments removed.

Doc. parsed optimized % parsed

1 53258 27638 51.9
2 40709 21939 53.9
3 20269 14707 72.6
4 20501 14785 72.1
5 29943 9738 32.5
6 446908 138695 31.0
7 14405 13512 93.8

Average 58.3

ing and decompressing HTML of servers and browsers as its com-
pression is 8 times faster and its decompression is 3 times faster.

It should be kept in mind that, while our optimizations may be
more costly than conventional compression, they produce imme-
diately usable HTML output, and therefore entail no “decompres-
sion” cost whatsoever.

11. CONCLUSION AND FURTHER WORK
In conclusion, the optimization techniques analysed in this paper

achieve a significant reduction in the size of WYSIWYG HTML
documents: the markup in the test documents was reduced to an
average of 58% of its original size. The results were even better for
some document types—with all text removed, the markup alone
was reduced by 68% to 32% of its original size. This translated to
an average reduction of whole HTML documents to 56% of their
original size.

In this work we succeeded in our aims of investigating and iden-
tifying the aspects of HTML mark-up that are able to be changed
while still leaving a semantically equivalent document. We devel-
oped techniques to improve the HTML aspects identified, including
the removal of whitespace and proprietary attributes, dead-markup
removal, the use of header style classes and dynamic programming.
For dynamic programming, we extended ideas presented by entries
in the 2001 ICFP programming competition to a real-world markup
language and dealt with all the pitfalls of this more complicated
language.

We conducted quantitative experiments on the performance of
the various techniques, both individually and in combination, and
compared the performance of our techniques to simple, text-based
compression. We optimized the algorithm to make it run as fast as
possible so that it may eventually be practically useful, as this is a
project with a very practical aim.

Much can still be done to extend and improve on the work pre-
sented in this paper. Some possible extensions include:

• Perform thresholding on dynamic programming parse chart
cells based on “goodness” of a particular parse rather than on
a strict cell quota. This would make the thresholding method
closer to traditional beam thresholding.

• Attempt to get closer to the semantic meaning of a page, and
create HTML markup from scratch rather than re-arranging
what is already there. This would require each element in the
parse tree to know all formatting applied to it, including that
inherited from parent elements.

• In relation to the above, extend the dynamic programming
grammar for the case where only one of a pair of elements
has a particular attribute so that the attribute may be lifted to
a higher level, and then overridden on the element to which
it does not apply. This would require the optimizer to have a
greater understanding of document semantics in order for it
to understand how to undo changes applied by an attribute.

• Improve the parser and general algorithm to handle the pecu-
liarities of HTML documents from a broader range of WYSI-
WYG editors, and indeed other HTML generators, including
perhaps non-conforming or errorful HTML.

• If appropriate, re-implement these optimizations in a more
efficient language, both for ultimate practical use, and also to
make larger-scale experiments (see next item) more feasible.

• Enlarge the test set to include a larger number of documents,
from a broader range of sources.

• Investigate in more detail the trade-offs of these various opti-
mizations vis-a-vis conventional compression, their effect on
storage costs, transmission times and latencies, etc.

• Investigate where these optimizations might fit into web de-
livery: For example, could they be effectively integrated into
caching servers, or into the back-end of HTML generators?

12. ACKNOWLEDGEMENTS
Thanks to Harald Søndergaard for pointing us towards the ICFP

programming competition and dynamic programming. Also, thanks
to James, Andrew, Tim, Scott, Charlotte and everyone in 2.19 for
company and helpful discussion, and to family and friends for be-
ing understanding and supportive, especially Kwan and Marcie.

13. REFERENCES
[1] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman.

Compilers: Principles, Techniques and Tools.
Addison-Wesley Publishing Company, 1988.

363

Table 11: Effect of zipping original and optimized files
gzip bzip2

Doc. original size
gzip
alone

gzip after
optimization % difference

bzip2
alone

bzip2 after
optimization % difference

1 126759 9887 (7.8%) 6769 (5.3%) 31.5 8902 (7.0%) 6119 (4.8%) 31.3
2 63912 5901 (9.2%) 4809 (7.5%) 18.5 5728 (9.0%) 4669 (7.3%) 18.0
3 21893 4608 (21.0%) 4063 (18.6%) 11.8 4503 (20.6%) 4034 (18.4%) 10.4
4 21648 4784 (22.1%) 4061 (18.8%) 15.1 4711 (21.8%) 4049 (18.7%) 14.1
5 45014 8321 (18.5%) 7921 (17.6%) 4.8 7197 (16.0%) 7073 (15.7%) 1.7
6 330859 10568 (3.2%) 8474 (2.6%) 19.8 4915 (1.5%) 5129 (1.6%) –4.4
7 23451 4495 (19.2%) 2348 (10.0%) 47.8 4113 (17.5%) 2277 (9.7%) 44.6

Average 21.3 16.5

Table 12: Time to compress or uncompress Document 1, 1000
times

Compression Tool Time

bzip2 381s
bunzip2 79s
gzip 46s
gunzip 23s

[2] Alfred V. Aho and Jeffrey D. Ullman. Principles of Parsing,
Translation and Compiling. Englewood Cliffs, N.J.,
Prentice-Hall, 1972.

[3] Perry Cheng, Tom Murphy, Charlie Smart, Dave Swasey, and
Joe Vanderwaart. Tycon Mismatch 2001 ICFP Programming
Competition Entry, 2001.
http://www-2.cs.cmu.edu/˜tom7/icfp2001/.

[4] Damien Doligez, Luc Maranget, and Pierre Weis. 2001 ICFP
Programming Competition 2001, 2001. http://
cristal.inria.fr/ICFP2001/prog-contest/.

[5] Glasgow Haskell compiler.
http://www.haskell.org/ghc/.

[6] Joshua Goodman. Global thresholding and multiple-pass
parsing. In Proceedings of the 2nd Conference on Empirical
Methods in Natural Language Processing, pages 11–25,
1997.

[7] Graham Hutton and Erik Meijer. Monadic parser
combinators. Technical report, University of Nottingham,
NOTTCS-TR-96-4, 1996.

[8] Simon Peyton Jones. Why use Haskell. haskell.org, 2001.
http://www.haskell.org/aboutHaskell.html.

[9] Daniel Jurafsky and James H. Martin. Speech and Language
Processing. Prentice-Hall Inc., 2000.

[10] Insider Labs. Space Agent: Web Site Optimization, 2003.
http://www.insiderlabs.com/spaceagent/.

[11] N. Jesper Larsson and Alistair Moffat. Off-line
dictionary-based compression. Proceedings of the IEEE,
88(11):1772–1732, 2000.

[12] B.T. Lowerre. The Harpy Speech Recognition System. PhD
thesis, Carnegie Mellon University, Pittsburgh, PA, 1968.

[13] mozilla.org. Mozilla Layout Engine, 2003.
http://www.mozilla.org/newlayout/.

[14] Craig G. Nevill-Manning and Ian H. Witten. Identifying
hierarchical structure in sequences: A linear-time approach.
Journal of Artificial Intelligence Research, 7:67–82, 1997.

[15] John Peterson and Olaf Chitil. Haskell: A purely functional
language. haskell.org, 2003.
http://www.haskell.org.

[16] Dave Raggett. HTML Tidy Documentation. W3C, 2002.
http://tidy.sourceforge.net/docs/api/.

[17] Dave Raggett. Clean up your Web pages with HTML TIDY.
W3C, 2003.
http://www.w3.org/People/Raggett/tidy/.

[18] Thomas Rokicki. Tom Rokicki’s 2001 ICFP Programming
Competition Entry, 2001.
http://thomas.rokicki.com/icfp2001/.

[19] Chung-Chieh Shan and Dylan Thurston. Markup
optimization by probabilistic parsing.
http://www.digitas.harvard.edu/˜ken/
icfp2001/d2-a4.pdf, 2001.

[20] VSE. Optimize your Web Page with VSE Web Site Turbo.
vse-online.com, 2003.
http://vse-online.com/web-site-turbo/.

[21] W3C. Cascading Style Sheets, Level 2 CSS2 Specification,
1998. http://www.w3.org/TR/REC-CSS2/.

[22] J. Ziv and A. Lempel. Compression of individual sequences
via variable rate encoding. IEEE T. Information Theory IT,
24 (5):530–536, 1978.

364

