
An Evaluation of Binary XML Encoding Optimizations for
Fast Stream Based XML Processing

Roberto J. Bayardo
IBM Almaden Research Center

bayardo@alum.mit.edu

Daniel Gruhl
IBM Almaden Research Center

dgruhl@us.ibm.com

Vanja Josifovski
IBM Almaden Research Center

vanja@us.ibm.com

Jussi Myllymaki
IBM Almaden Research Center

jussi@us.ibm.com

ABSTRACT
This paper provides an objective evaluation of the performance im-
pacts of binary XML encodings, using a fast stream-based XQuery
processor as our representative application. Instead of proposing
one binary format and comparing it against standard XML parsers,
we investigate the individual effects of several binary encoding
techniques that are shared by many proposals. Our goal is to pro-
vide a deeper understanding of the performance impacts of binary
XML encodings in order to clarify the ongoing and often con-
tentious debate over their merits, particularly in the domain of high
performance XML stream processing.

Categories and Subject Descriptors
H.3.4 [Systems and Software]: Distributed systems, information
networks, Performance evaluation (efficiency and effectivness)

General Terms
Performance, Algorithms

Keywords
XPath processing, XML binary formats

1. INTRODUCTION
While XML has arguably overcome questions whether it will

succeed as a lingua-franca of data interchange, debate continues as
to whether XML has a role to play in performance-critical appli-
cations such as database systems and high-performance network-
available services. Concerns about performance of XML-based
applications have steadily increased with XML’s ubiquity. While
these concerns are being addressed in various ways, one recurring
proposal is to exploit binary serialization formats of the XML doc-
ument model that are more efficient than the standard textual repre-
sentation. The topic was in fact the subject of a recent W3C work-
shop [1] which itself contained half a dozen such proposals.

The goals of these proposals typically fall along three dimen-
sions: Some of them attempt to reduce the size overhead of XML
data processing by applying XML-specific compression techniques
[25, 15, 17] . Others aim to (also) improve parsing performance, or
more simply reduce the complexity of parser implementation [2].

Copyright is held by the author/owner(s).
WWW2004, May 17–22, 2004, New York, New York, USA.
ACM 1-58113-844-X/04/0005.

In response to such proposals, some (e.g. [22]) have argued that
the rush to discard the benefits of the firmly standardized and con-
venient textual XML representation should not be made without
hard, compelling evidence as to necessity of such optimizations.
Most of the previously cited proposals provide only limited perfor-
mance studies that fail to precisely quantify the performance gains
one might expect in a variety of applications.

In this paper, we aim to provide an objective evaluation of the
effect of “binarization” of XML data with respect to high perfor-
mance XML stream processing. Rather than propose one single
format for evaluation, we quantify the individual effects of several
typical binary encoding optimizations that can be exploited dur-
ing XML streaming. XML stream processors, such as SAX-based
parsers [18], avoid memory management overhead of DOM-based
approaches, and are thus the method of choice when striving for
high performance. By processing the XML stream as events, ap-
plications can more efficiently capture only the relevant portions
of any incoming XML for immediate conversion into an optimized
application specific format.

This paper specifically examines the effects of optimized binary
XML representations on high performance XML-processing ap-
plications, such as XML database systems [26] and web services
residing on a fast network [2]. We assume the infrastructure has
suitable network bandwidth and storage such that the bottleneck is
the XML processing itself, not the delivery of XML over the net-
work or disk subsystem (which have motivated proposals for XML-
specific compression schemes). We thus focus on optimizations
that have the potential of providing benefits in this scenario. In sit-
uations where the bottleneck may also be network overhead, XML-
specific or generic data compression schemes could be applied or-
thogonally, provided the compression scheme is of low overhead.

The paper proceeds as follows. We first outline various stream-
based binary encoding options, starting from a “trivial binary” en-
coding, then extending it with other optimizations such as string to-
kenization and embedded offsets to support rapid identification of
document elements that are of interest through random access. The
next section discusses a stream-based XQuery processor which we
use as the basis of our evaluation. Applications that use stream-
based XML processing are likely to use XPath or XQuery-like
methods (if not an XPath or XQuery processor itself) for extracting
the information of interest from the incoming XML. This method
thus provides an evaluation that should be indicative of application
performance in general. Our evaluation is a carefully crafted “ap-
ples to apples” comparison of the fastest XML parser we are aware

345

<PROPERTY>
<URL>http://...</URL>
<ADDRESS>

<STREET>1157 SUMNER AV</STREET>
<CITY>APTOS</CITY>
<STATE>CA</STATE>
...

<TYPE>Detached Single Family</TYPE>
...
</PROPERTY>

Figure 1: An XML Fragment from the Real Estate dataset.

Figure 2: The XML document model depicted as a tree.

of (expat [5]), the most popular high performance parser (Xerces
in C [27]), and simple parsers for processing the various binary en-
codings. The evaluation uses large XML datasets that are represen-
tative of both relatively flat and nested XML. To quickly summarize
the results, a trivial binary encoding supports typical performance
improvements of a factor of 2 over expat. Further optimizations
of the binary encoding can boost performance improvements up to
a factor of 6, depending on the structure of the incoming dataset
and the particular information required by the application from that
document. The following section discusses the impact of these re-
sults. While the trivial binay encoding has few implications on the
parsing interface or the XML generation strategies, the other opti-
mizations introduce various complexities along these dimensions.
We discuss these complications in order to put the performance
gains into perspective. We finally conclude the paper with a dis-
cussion of where we see the binary encoding debate to be heading.

2. BINARY ENCODINGS
An XML document can be represented as a tree, with data ele-

ments appearing at the leaves and nodes corresponding to the doc-
ument’s tag nesting (see Figures 1 and 2). We sometimes refer
to this tree-structured representation of an XML document as the
XML document model. The tree representation can beserialized
by performing a depth-first traversal of the document tree and out-
putting data to a stream at each node. The standard serialization of
the XML document model is the familiar textual XML document
format [29].

Of the various alternate XML serialization proposals, some in-
volve serializing the document tomultiplestreams and some a sin-
gle stream. Multiple-stream serializations are typically used to im-

Key of
the root

Root
Attributes

Xtalk
Header

Does the
root have
children

Key of
first child

1st child
attributes

Does 1st
child have
children

The string value
for the first child

�������
�������
�������

�������
�������
�������

How Many

Figure 3: The XTalk serialization format.

prove compression by individually grouping and compressing re-
lated document components. For example, a common theme in
these proposals is to serialize data and structure components to in-
dependent streams, allowing the more redundant (and hence com-
pressible) structure components to be compressed independently.
Multi-stream serializations prohibit simple pipelined streaming and
processing of XML, since they typically require at least one of the
streams be retrieved in its entirety before any processing takes place
(stalling the pipeline for that duration). Because of such complica-
tions multiple-stream based approaches impose on pipelining, in
this paper we focus on single-stream serializations. Note, however,
that even single-stream serializations can be burdensome if the data
that must be generated early on in the stream requires knowledge
of data that will be serialized much later. We will be careful to
point out impacts of serialization optimizations on pipelining when
appropriate.

2.1 Trivial Binary Encodings
We define atrivial binary encodingof the XML document model

as a single-stream serialization which represents only the docu-
ment’s structure using binary information. Thus, in a trivial binary
encoding, all attribute names, values, element names, and PCDATA
text appears as text in the serialization. Only delimiting of this data
is achieved through binary encoding, for example through integer
lengths or binary end-of-string indicators. An example of a trivial
binary encoding is XTalk [2] (see Figure 3), though other trivial
binary encodings are possible.

Trivial binary encodings are desirable for various reasons. First,
they are typically very easy to parse, and unlike more complicated
binary encoding strategies, they do not adversely impact perfor-
mance of generating the serialization when compared to textual
XML. Though a trivial binary representation no longer satisfies the
“view source” principle which has fostered growth of the world
wide web, it violates this principle only slightly. Due to its sim-
plicity, a widely adopted trivial binary encoding could quickly be-
come viewable and editable with standard editors such as emacs via
(built-in) extensions and plugins. Another positive aspect of a triv-
ial binary encoding is that it can easily support streaming, in both
inbound (parsing) and outbound (generation) directions. Stream-
ing of both inbound and outbound XML supportspipelinedXML
processing, whereby only a small part of the stream must remain
in memory to perform the desired computation. A final positive as-
pect of such an encoding is that no modifications of existing XML
processing APIs are required to exploit them.

Though trivial binary encodings can support pipelined XML pro-
cessing, not all do. For example, a problematic aspect of the XTalk
serialization in this context is that the number of children of a node
must be known before the node and its descendants are serialized.
While the DOM API and most other memory-resident document
model APIs allow applications to quickly query the number of chil-
dren of any node, the stream-oriented SAX API does not. SAX
supports the startElement() application callback that is invoked by
the parser whenever encountering a new element in the incoming

346

XML stream. However, this method does not provide the number of
children of the element, and indeed, in many applications it would
be unreasonable to assume that an XML generator would know
the number of children of an element a priori. Generating XTalk
output from a sequence of SAX events cannot be accomplished us-
ing bounded main memory as a result. We therefore suggest that
streaming applications instead use a serialization that generates an
“end of children” indicator after the node’s children have been fully
serialized. Our experiments have shown that the effect on parsing
performance of this variation is negligible.

2.2 Tokenization
In addition to encoding delimiters, most binary encoding pro-

posals also suggesttokenizationof the textual strings within a doc-
ument, such as those used for element and attribute names. Tok-
enization is useful for compression since frequently recurring strings
need not be repeated within the encoding. Instead, a much smaller
token identifier can be output with each occurrence. Tokenization
can also improve application performance since instead of using
expensive string comparisons to identify portions of the document
of interest, applications can simply compare the token value – typ-
ically a single byte or integer.

The schemes for mapping token identifiers to actual string values
are varied. The simplest involve producing a string table before the
document itself, allowing strings in the string table to be identified
by the string’s offset in the table. Others involve complex code page
assignments [25]. The end result however is that common strings
can be more compactly and efficiently represented using much less
data, often only a single byte.

Tokenization, if it is implemented through prepended token ta-
bles or through code pages, prohibits pipelined generation and con-
sumption of the document stream. However, it is possible to instead
embed token definitions into the data stream as new strings are en-
countered by providing a special token definition directive in the
binary representation [25]. In our experiments, we evaluate the ef-
fects of an extended XTalk encoding that uses suchdemand-driven
tokenization of element and attribute names. To keep the imple-
mentation simple and fast, tokens in our implementation are always
4-byte network unsigned integer values. We did not consider tok-
enization of element and attribute values, since they recur much
less frequently.

Since a token ID can be trivially mapped to a string reference
during parsing, existing APIs such as SAX are compatible with the
optimization. However, to better exploit the processing advantages
of tokenization, the API might be extended to allow the applica-
tion to obtain the canonical string references, for example through
a defineToken() callback. Such an extension would allow the ap-
plication to test for element or attribute name equality via simple
pointer/reference comparison instead of a full string compare. The
tokenization implementation we evaluate in the experimental sec-
tion exploits this strategy.

2.3 Embedded Indexes and Skip-To Pointers
Another enhancement of the binary stream representation is to

embed pointers that support “random access” navigation without
requiring a full depth-first traversal of the entire tree structure. Ran-
dom access is valuable when only a portion of the document is
needed by the application. In the context of streaming, pointers can
be represented by embedding a value representing thedistancein
bytes from the value’s location to a particular portion of the docu-
ment that may be of interest. Such pointers allow a parser to quickly
advance to relevant portions of the document, where relevance is
determined by the application.

Figure 4: Sibling pointers allow subtrees to be skipped.

Many random-access optimizations require significant extensions
to existing stream-based XML processing APIs in order to exploit
them. We therefore chose to evaluate a simple but potentially pow-
erful method of embedding pointers that can be exploited with only
one small SAX API modification. This method involves embed-
ding into the binary encoding stream the distance to the subse-
quentsibling of a given element. Conceptually, this adds naviga-
tion pointers to the XML document model as depicted in Figure 4.
Sibling pointers allow the application to quickly advance over the
descendants of a given node when it can be determined that none of
the descendants are relevant. These decisions can be made in vari-
ous ways depending on the application. We will describe how such
relevance decisions can be made by XPath or XQuery processors
in the subsequent section.

The impact on stream-oriented XML processing APIs required
to exploit sibling pointers is small. In our implementation, only the
standard startElement() callback of the SAX API is modified to re-
turn a special flag indicating the parser should advance, as quickly
as possible, to the element’s nearest subsequent sibling. Recall that
the startElement() method is an application-provided handler in-
voked by the SAX parser whenever it encounters a new node in the
incoming stream. The function provides the name of the element,
and any attributes and attribute values embedded within that ele-
ment, all of which can be used by the application in determining
whether a skip to the next sibling is warranted.

While the impact of sibling pointers on stream consumption is
minimal, it is not typically possible to generate such encodings us-
ing bounded memory in order to support pipelining. This is because
the XML generator may not know a priori precisely what informa-
tion will be serialized by an element’s descendants, making it im-
possible to compute the sibling’s distance without significant com-
putation or delaying the stream output until the entire document has
been serialized in memory. Stream-oriented XML generation is a
problem in general when long-distance pointers are required. Nev-
ertheless, we evaluate its impact since there are situations where the
XML may be generated “offline”, and stream-oriented processing
is used only for XML consumption. For example, consider the case
where information may be shipped in XML format on CD-ROM.

Random access optimizations may place restrictions on other op-
timizations such as on-demand tokenization. If tokens are defined
as new strings are encountered in the document, then any advance

347

to a new part of the document will likely lead to skipping over re-
quired token definitions. Formats supporting index-like optimiza-
tions such as sibling pointers should therefore provide all token
definitions prior to any index structures or sibling pointers.

2.4 Schema Based Optimizations
Some proposals [13, 25] suggest exploiting schema information,

when available, for further optimizing the encoding. Such opti-
mizations show promise for improving run time of applications
such as XQuery processing since type information may be inferred
from the schema instead of determined at runtime from the infor-
mation provided by the incoming stream. A problem with relying
on schema information (other than it not always being available)
is that it causes applications to become tightly coupled by creating
strong dependencies between parsing/generation and the schema.
While these limitations may be acceptable in some settings, some
would credit the success of web services and XML-based data in-
terchange in general to its support of loose coupling. This paper
focuses on evaluating impacts of binary encoding optimizations
which have only minimal impacts on loose coupling and existing
programming interfaces such as SAX, since we believe such op-
timizations are the most pertinent to the binary encoding standard
debate.

3. XQUERY OVER SAX EVENTS
To evaluate the usability of the different binary encodings in

high-performance applications we used the TurboXPath [12] stream-
ing XQuery processor as our representative application. As vari-
ous systems are adding support for XML, XQuery is emerging as
the main tool for optimized, high-performance querying and trans-
forming of XML documents. XQuery, along with XSLT, is based
on XPath – a path language allowing navigational access to parts
of XML documents. Efficient path processing will be crucial for
achieving scalability in any XQuery implementation. We describe
here how TurboXPath works, and how we have modified TurboX-
Path to exploit the binary encoding optimizations such as tokeniza-
tion and skip pointers for improved performance.

TurboXPath accepts a simple form of the XQueryfor-let-where-
return (FLWR) construct. It operates in two phases. Theretrieval
phase extracts tuples of variable bindings representing document
fragments or atomic values. Each binding can represent a single
item, or a sequence of items extracted from the document. During
the second,result constructionphase, the bindings are processed by
a return expression, to produce the result of the query. XML con-
structors are common return expressions. A constructor produces
a new XML data model instances based on the input expressions.
For example, the query

for $c in
document("c.xml")/customer[order/@date="12/12/01"]
let $cid := $c/cid/text()
let $name := $c/name
for $o in $c/order

let $a in $o/amount
return

<customerSummary>
<customerID> {$cid} </customerID>
{$name}
{$a}

<customerSummary>

extracts the names, cids and the order amounts of the customers
that have placed an order on the given date. The return clause has
an expression that for each triplet extracted from the document,

Figure 5: System architecture of the retrieval phase.

creates a new XML element named ’customerSummary’ contain-
ing the required information. The $cid and $name variables are
defined using alet clause and can be bound to sequences (e.g., if a
customer is registered using two names)

TurboXPath supports a complex set of XQuery features includ-
ing for , let whereandreturn with XPath paths composed of steps
usingchild, descendant, self, parent andancestoraxes; any node
test (’*’); functions, arithmetic and structural predicates. TurboX-
Path operates over any XML document, including cases when the
document is recursive (e.g., nested part elements). Recursive docu-
ments impose harder processing requirements on streamed XQuery
processors. In conjunction with a new XML data type, XML index-
ing, and a library of XQuery operators, TurboXPath can be used to
extend a database engine or an application server to full XQuery
compliance.

Figure 5 show the internals of TurboXPath. The expression parser
is responsible for parsing the input query expressions and produc-
ing a single parse tree (PT) representing all paths in the query.
Nodes in the PT correspond to node tests of the query XPath ex-
pressions. Each node is annotated with name, namespace URI,
node test type (element, attribute, etc.) and axis. The trees of the
different XPath expressions are attached based on the variable cor-
relation.

Figure 6 illustrates the PT generated for the example query above.
Each PT has a special root node at the top, represented by ’r’ in
Figure 6. Nodes corresponding to the variables used in the return
clause expression are calledoutputnodes. In Figure 6 there are 3
output nodes: ’name’, ’amount’ and the text node.

A PT node may also have a set of associated predicate trees.
Each predicate tree isanchoredat a PT node, called thecontext
nodeof that predicate. In the example, ’customer’ is the context
node for the predicate on the order date. Predicate tree nodes are
shown in gray in the figure. Predicate trees are composed of leaves
that are either constants or pointers to nodes in the PT subtree
rooted at the context node. Internal predicate nodes are operators
as defined in the XQuery/XPath standard specifications.

The evaluator uses the parse tree to process the stream of SAX
events generated from the input document to identify the fragments
that are to be extracted and returned to the consumer. During docu-
ment processing, a SAX parser or a binary encoding SAX-compliant

348

Figure 6: Parse tree example

wrapper generates events from the input XML document. The eval-
uator uses these events to perform the state transitions and popu-
late the buffers. While the query parse tree isstatic and does not
change during processing, a stack-based data structures is used to
keep track of the mapping state. Document fragments needed for
predicate evaluation or matching an output node are stored as in-
termediate results in buffers queues associated with the output and
predicate nodes. After bindings for all the output variables are gen-
erated the tuple construction module constructs tuples from buffers
in the queues. The return clause expression is evaluated over the
tuples bindings to produce the query result.

For this paper we have adapted TurboXPath to exploit tokeniza-
tion and skip pointer optimizations when available. The most com-
mon test performed by a TurboXPath predicate node is to match
an element or attribute name against one that appears in the query.
When the encoding supports tokenization, our implementation uses
appropriate pointer equality instead of string equality to test if the
element or attribute names match. Our implementation also aug-
ments the query evaluator to return the “skip” flag from startEle-
ment() whenever it reaches a state in the predicate tree where the
processor cannot generate any results until the given element is ter-
minated. For example, if the customer elements of the document
in the example above contained multiple ’payment’ children, then
these could be skipped since there are no conditions or extractions
that depend on them.

4. EXPERIMENTAL SETUP
We conducted a series of experiments to measure and compare

the performance of the parser and query methods discussed ear-
lier. The methods were labeled as shown in Table 1. In an experi-
ment, a chosen method is invoked to answer a query on a particular
dataset. The datasets used and queries answered are described be-
low. Each query was presented to TurboXPath-based methods us-
ing the XQuery syntax and to Xalan-based methods using an equiv-
alent XSL syntax. Each experiment was executed three times and
the lowest observed run time was used in the comparison.

All parsers were run in non-validating mode and all query meth-
ods based on TurboXPath used the SAX callback API. Datasets
were normalized to use UTF-8 encoding, and all entity references

Label Description
Xalan-J Xalan-J V2.5.2 with Xerces-J V2.4.0 parser
Xalan-C Xalan-C V1.6 with Xerces-C V2.3.0 parser
Xerces TurboXPath with Xerces V2.1.0 parser
Expat TurboXPath with Expat V1.95.7 parser
XTalk TurboXPath with XTalk V1.0 parser
Skip TurboXPath with XTalk + Skip option
Token TurboXPath with XTalk + Token option
Token+Skip TurboXPath with XTalk + Token and Skip

Table 1: Methods compared and their labels.

were pre-expanded to support non-validating parsing. Our decision
to focus on non-validating parsing was based on the fact that vali-
dation adds another layer of overhead, and is likely to be disabled
in high performance applications. Since expat does not provide
a SAX callback API, we implemented a thin SAX callback layer
on top of expat’s existing callback interface. This implementation
closely mimicked the implementation of our binary parser inter-
faces with respect to buffer and memory management to ensure a
fair comparison.

The experiments were performed on an IBM Thinkpad T23 with
a 1.133 GHz Pentium III CPU and 512 MB of memory running
Windows 2000. Each program was compiled with the Miscrosoft
Visual C++ 6.0 compiler using identical compiler settings. Xalan-J
was executed in the Sun Java Runtime Environment V1.4104. We
also ran the same experiments on a Red Hat Linux 8.0 and gcc-3.2
based machine. Since results were qualitatively similar, we present
only the Windows run times here.

All datasets used in the experiments were buffered in main mem-
ory during runs. This eliminated the effect of disk I/O and focused
the experiments on pure CPU cost.

4.1 Datasets
Two datasets were used in the experiments, labeled DBLP and

RE. DBLP is an XML version of the DBLP Computer Science
Bibliography database available at http://dblp.uni-trier.de/xml/, and
is roughly 180 MB in size. The structure of DBLP is fairly flat,
consisting of a listing of scientific publications along with bibli-
ographic information such as title, name of authors, and name of
conference or journal.

The RE dataset is a listing of 60,000 real estate properties (homes)
that were offered for sale in the San Francisco Bay Area in 2002-
2003. The dataset is roughly 50 MB in size and its structure is 6
levels deep (see DTD in Appendix B). In addition to basic descrip-
tive information of each property such as address, age, and size,
the listing includes date and price information. The dataset was
crawled and extracted from mlslistings.com, a public web site pro-
viding real estate data. Data extraction was performed using XSL
and the ANDES Web Data Extraction system [19].

In order to study the scalability of the methods, we created ad-
ditional RE datasets containing a different number of properties.
Datasets were labeled RE-n wheren was set to 2.5, 5, 10, 20, 40,
and 60 and indicates the number of properties (in thousands) con-
tained in the dataset. For example, RE-2.5 contains the most re-
cent (newest) 2,500 properties. It is assumed that data distribution
is uniform along the time dimension, meaning, for example, that
RE-10 contains twice as many properties located in a given city or
having a certain size as RE-5. In other words, the selectivity of
the queries used in the experiments was independent of the dataset
size.

349

Figure 7: Results of DBLP-QUERY(left) and RE-QUERY(right) experiments.

4.2 Queries
For the DBLP dataset, we used the following query (DBLP-

QUERY): Return the year and title of all conference publications
authored by “Peter P. Chen”. The XQuery syntax is shown below
and the corresponding XSL syntax is shown in Appendix B. We
also ran a test on the DBLP dataset to measure to cost of parsing
alone.

for $I in /dblp/inproceedings
[author[text()="Peter P. Chen"]];

let $Y := $I/year;
let $T := $I/title;
return $Y, $T

Three queries were run on the RE dataset. RE-QUERY1 is“Re-
turn all properties listed in the city of Aptos”. It returns one partic-
ular section of the dataset and does not need to search deep into the
tree. RE-QUERY2 is“Return the age and price of all properties in
ZIP code 95032 with size between 1875 and 2000 square feet”. It is
highly selective but requires that eachPROPERTYelement be vis-
ited and evaluated. RE-QUERY3 is“Return all ZIP codes equal to
95037”. It performs a recursive search on allZIPCODEelements
in the dataset and returns the few that match. The XQuery syntax
for the three queries is shown below and the corresponding XSL
syntax is shown in Appendix B.
RE-QUERY1:

for $I in /REALESTATE/CITY[@NAME="APTOS"]/PROPERTY;
return $I

RE-QUERY2:
for $l in /REALESTATE/CITY/PROPERTY

[SQFT > 1875 and SQFT < 2000
and ADDRESS/ZIPCODE = 95032];

let $a := $l/AGE;
let $p := $l/LISTINGS/LISTING/PRICE;
return $a, $p;

RE-QUERY3:
for $I in //ZIPCODE[text() = 95037];

return $I

5. RESULTS
Charts depicting the experimental results are shown in Figure 7.

Because some of the figures are small and may be difficult to inter-
pret, we provide raw numerical values in Appendix B. In Figure 7,

we show the run time of the different query methods for DBLP-
QUERY as well as a “parse-only” run time. Results for Xalan-J
and Xalan-C are not shown in the graph because Xalan-J was un-
able to execute the query due to insufficient memory, and the run
time of Xalan-C was off the chart (1,800 seconds) due to excessive
memory consumption and paging. Run time for TurboXPath with
the Xerces parser is labeled XMLNav.

Parse-only run times were calculated by running each parser with
a “no-op” application. That is, the SAX callback functions were in-
voked by the parsers, but the bodies of these functions were empty.
Looking at these run times, we observe that the expat parser per-
forms roughly 3 times faster than Xerces. XTalk and its different
variations ran a bit more than twice as fast as expat. A 5% improve-
ment in run time is obtained by tokenization, while the skip option
slowed parsing times by about 10%. This slowdown results from
the combination of extracting the skip pointers, and an increase in
dataset size of 10%.

When the query evaluation cost is included in the run times, we
notice that the performance ratio between expat and Xerces remains
constant at 3, but the performance advantage of XTalk relative to
expat is reduced somewhat. Switching from expat to XTalk im-
proved the run time by 35%, and a further improvement of about
10% resulted from exploiting the skip option. Tokenization helped
yet another 5%.

We note that the benefit of skipping in DBLP-QUERY was lim-
ited because the skip distance was rather small; child elements of
/dblp which did not matchinproceedings were fairly small,
about 200 bytes each. Small skips such as these were performed by
usingfread() instead offseek() because the latter causes I/O
buffers to be flushed.

A larger benefit of skipping is seen in our experiment with RE-
QUERY1 (Figure 7). The query searches for properties in the city
of Aptos, which means that the entire XML subtree of all cities
whose name was not Aptos could be skipped. The RE dataset con-
tains 102 cities with an average XML content size of about 0.5 MB
per city, so the skip distance was significant. TurboXPath using the
Xerces parser executed the query about 5 times faster than Xalan-J
and twice as fast as Xalan-C. Switching from Xerces to the expat
parser reduced the run time by another factor of 2. The run time of
XTalk was about half of that of expat, and the skip option reduced

350

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 10 20 30 40 50 60

R
un

 T
im

e
(s

ec
on

ds
)

Dataset size (thousands of properties)

Xalan-J
Xalan-C
Xerces
Expat
XTalk

Skip
Token

Token+Skip

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 10 20 30 40 50 60

R
un

 T
im

e
(s

ec
on

ds
)

Dataset size (thousands of properties)

Xalan-J
Xalan-C
Xerces
Expat
XTalk

Skip
Token

Token+Skip

Figure 8: Scalability of methods (RE-QUERY1). Expanded range on right.

the run time by another factor of 3. Tokenization seemed to have
very little effect in this query.

The results of RE-QUERY2 confirmed the performance advan-
tage provided by XTalk over Xerces and expat, but also highlighted
the significance of complex query evaluation with respect to pars-
ing time. The query reaches deeper into the RE data structure, re-
quiring more XPath navigation than RE-QUERY1. This reduces
the performance difference between the different parser options:
TurboXPath with Xerces is only 40% faster than Xalan-C, and Tur-
boXPath with XTalk is only 35% faster than TurboXPath with ex-
pat. The relative difference between Xerces and expat remained at
about a factor of 3.

RE-QUERY2 does not allow for effective skipping because ev-
ery PROPERTYelement must be inspected for a potential match.
The run time of Xalan-J and Xalan-C is virtually unchanged from
RE-QUERY1. Tokenization does seem to help more than it did
in RE-QUERY1, this time providing a 5% run time improvement.
This is because the query reaches deeper into the document tree,
requiring more element and attribute-name equality comparisons
which can be performed by simple pointer comparisons when tok-
enization is used.

All methods except Xalan-J executed RE-QUERY3 faster than
RE-QUERY2. Query evaluation was significantly simpler in the
former, resulting in a vast reduction in overall run time. The relative
performance of the methods was similar to RE-QUERY1, except
for methods using the skip option. Those methods were not able
to exploit skipping (as everyZIPCODEhad to be examined by the
query), and in fact suffered from the increased overhead required
to extract and advance over the skip pointers.

The final experiment measured the scalability of the different
methods as a function of dataset size (Figure 8). RE-QUERY1
was executed against different RE dataset sizes, ranging from 2,500
property listings (3 MB) to 60,000 (54 MB). We observe that all
methods except Xalan-J scale up linearly with the size of the dataset,
which is expected since stream-oriented XML (query) processing
is a linear time procedure. Though we did not confirm it, we sus-
pect the non-linear scale-up of Xalan-J is likely due to a non-linear
increase in garbage collection overhead.

6. DISCUSSION
The parse-time only experiments clearly show that the binary

XML encodings can be parsed over 2 times faster than XML. It’s
possible that further optimization of the binary parsers can increase
the performance margin, but we feel it would be unlikely for a bi-
nary parser to outperform an optimized XML parser by much more
than a factor of three in general without exploiting random access
or schema-specific optimizations.

While the performance gains of binary encodings over expat are
significant, the performance gains of expat over Xerces are even
more so. This suggests that those who encounter performance prob-
lems in their XML applications should first consider converting
DOM-based implementations to stream-oriented ones that exploit
an optimized parser such as expat.

The subsequent experiments reveal that the application overhead
of extracting relevant data from the XML document can be kept
rather small. For the simplest queries, the XQuery overhead was
less than the parser overhead. For more complex queries, the ex-
periments revealed a clear shift in overhead from parsing to the
XQuery application, as indicated by the decrease in speedups be-
tween expat and the binary encoding parsers. One anomaly we
identified with respect to application overhead was that TurboX-
Path with Xerces spent considerably more time in the application
than did TurboXPath with the lighter-weight parsers, even though
the application code performed the same operations. For example,
Figure 7 shows that Xerces-based processing spent almost 15 sec-
onds in application code compared to 6.5 seconds for expat and
XTalk. (Tokenization reduced application overhead slightly to 5.6
seconds due to its enabling of pointer-based equality tests instead of
full string comparisons.) Profiling did not reveal any clear cause of
this anomaly – TurboXPath with Xerces simply spends more time
in the same looping structures compared to when using the other
parsers. We conjecture that the increased memory footprint of the
Xerces parser could be resulting in poor CPU cache utilization.

A surprising finding is that tokenization only has a small effect
on overall parsing as well as application performance. In situations
where network or disk throughput is the bottleneck, tokenization
could prove much more beneficial. However in situations where
CPU is the bottleneck, the performance gains are typically under
10%. While tokenization might be an effective means at document
compression, it does not necessarily significantly reduce compute
overhead.

The results for the skip-to pointer enhanced encoding show that

351

random access can be very beneficial for the appropriate queries
on deeply nested data. Unfortunately this comes at the expense
of pipelining since pointers cannot be generated under the typical
streaming constraint of maintaining a bounded buffer size. Skip-to
pointers also slow the performance of queries that cannot exploit
them, though only by a small (10%) amount.

In summary, from the perspective of CPU impacts on stream-
based XML processing, an optimized XML parser implementation
such as expat yields significant and consistent performance im-
provements over Xerces, and trivial binary encodings provide sig-
nificant and consistent reductions in parsing overhead over XML.
Tokenization helps improve performance only slightly even though
it has the potential to reduce cost of both parsing and application-
layer operations. Skip-pointers provide the most substantial perfor-
mance improvements, though only in limited circumstances, and at
the expense of pipelining.

7. RELATED WORK
The Apache Xerces project [27] has set the standard in XML

parser implementation, providing both Java and C++ versions that
implement both the DOM [28] and SAX [18] standard parsing
APIs. There are various simplified parser implementations that
trade generality for improved performance, including Sparta [10]
which claims a factor of 5 improvement over Xerces Java. On the
C side, the expat [5] parser is the fastest publicly available XML
parser of which we are aware. We found that in general the perfor-
mance of the C and C++ parsers significantly outperform their Java
counterparts.

There are several proposals for binary XML serialization and
compression formats, including Millau [25], XCQ [13], XTalk [2],
XMill [15], WBXML [17], and half a dozen proposals from the
Workshop on Binary Interchange of XML Information Item Sets [1].
These proposals all perform only limited comparisons of their en-
codings to standard XML. This paper instead individually evaluates
optimizations that are common across many of these proposals in
order to understand their effects in the context of high performance
XML stream-based applications.

Several projects including Lore [8] and Apache Xindice [26] pro-
vide XML data-storage and data-management tools. Commercially
there are several XML data management packages available in-
cluding the DB2 XML Extender [11] and Oracle XML DB [21],
both of which solve the more general XML selection problem (as
well as providing the expected ACID guarantees) and thus have
performance challenges compared to a simple approach. Prod-
uct Attribute Table approaches, which are suitable for representing
market-basket like data, are covered in [3].

There are also several schemes in the literature for indexing XML
and semi-structured data for both simple [4, 14] and branching [24,
6] path expressions. Unfortunately indices for XML data that are
general enough to be used in answering a wide range of queries
tend to be so large in practice that they offer little improvement
over evaluating queries directly on the data [24]. They are also not
compatible with stream-based processing – the focus of this paper.

Recently an XQuery implementation [7] and some XPath imple-
mentations [20, 9, 16, 23] that operate over XML streams have been
reported. In [7], Florescu et al. describe a XQuery engine designed
for data transformations on XML streams based on the iterator
model. While the focus of this engine is on completenes, TurboX-
Path, on the other hand, has been designed as high-performance
iterator that can be used by an iterator-based query processor. The
XPath processors proposed in [16, 20, 23] are based on connecting
a set of FA in a network that represents the query. These approaches
support a much smaller set of features compared to TurboXPath

and may require memory that grows exponentially with the size of
the query.

8. CONCLUSIONS
We have evaluated the impact of several common binary XML

encoding optimizations on XML parsing and application perfor-
mance. Our representative application was a stream-based XQuery
processor enhanced to exploit encoding-specific optimizations such
as tokenization or skip-to pointers, when available. We chose these
optimizations for our evaluation because they can be exploited by
applications through only minimal modification of stream-based
APIs such as SAX.

Our experiments have shown that there is some merit to sugges-
tions that XML parsing and application performance can be im-
proved upon through binary encodings. However, more significant
improvements can be obtained by adopting optimized stream-based
XML parsers if they are not already being used. Also, because C
and C++ parsers outperform their Java counterparts, Java applica-
tions could make substantial performance gains through native li-
braries for handling the XML streams.

We have also found that some optimizations such as tokenization
do not lead to substantial performance improvements, even if the
application can exploit tokens for reduced string comparison cost.
Tokenization may be more useful in applications requiring XML
compression, though further experiments are required to justify it
even in this context since generic compression schemes may be just
as effective.

We have attempted to remain impartial regarding the debate over
the need for a standard binary encoding format for XML. Our re-
sults have shown that with the exception of trivial binary encoding
strategies, most binary encoding optimizations yield performance
improvements in only limited applications or situations, and/or re-
strict the ability for pipelined XML processing. This supports the
contention in [22] that there is not one binary encoding standard
that could satisfy the needs of all applications. On the contrary,
however, a trivial binary encoding standard would appear to at least
provide performance benefits to most applications, without any sig-
nificant drawbacks other than compromising the view-source prin-
ciple. We therefore suggest any standards work in the binary en-
coding area consider the possibility of a trivial binary encoding
standard as opposed to attempting to maximize performance gains
at the expense of encoding generality. Optimizations that can of-
fer substantial performance improvements in more limited circum-
stances, such as random-access or schema-specific optimizations
could still be exploited by internal representations when appropri-
ate, but may not be well-suited for standardization efforts.

9. REFERENCES
[1] Report from the w3c workshop on binary interchange of xml

information item sets.http://fr.w3.org/2003/08/
binary-interchange-workshop/Report.html ,
2003.

[2] R. Agrawal, R. Bayardo, D. Gruhl, and S. Papdimitriou.
Vinci: A service-oriented architecture for rapid development
of web applications. InWWW10, Hongkong, May 2001.

[3] R. Agrawal, A. Somani, and Y. Xu. Storage and querying of
e-commerce data. InProc. of the 27th Int’l Conference on
Very Large Databases (VLDB 2001), Roma, Italy, September
2001.

[4] B. Cooper, N. Sample, M. J. Franklin, G. R. Hjaltason, and
M. Shadmon. A fast index for semistructured data. InThe
VLDB Conference, pages 341–350, 2001.

352

[5] C. Cooper. Using expat. Inxml.com
(http://www.xml.com/pub/a/1999/09/expat/index.html), 1999.

[6] A. M. Flavio Rizzolo. Indexing xml data with toxin. In
WebDB-2001, 2001.

[7] D. Florescu, C. Hillery, D. Kossmann, P. Lucas, F. Riccardi,
T. Westmann, M. Carey, A. Sundararajan, and G. Agrawal.
The bea/xqrl streaming xquery processor. InProc. of the 29th
VLDB Conference, 2003.

[8] R. Goldman, J. McHugh, and J. Widom. From
semistructured data to xml: Migrating the lore data model
and query language. InProceedings of the 2nd International
Workshop on the Web and Databases (WebDB ’99),
Philadelphia, Pennsylvania, June 1999.

[9] T. Green, M. Onizuka, and D. Suciu. Processing XML
streams with deterministic automata and stream indexes.
Technical report, University of Washington, 2001.

[10] HP Labs. The sparta project.
http://sparta-xml.sourceforge.net/ .

[11] IBM. Db2 xml extender.http://www-3.ibm.com/
software/data/db2/extenders/xmlext/ .

[12] V. Josifovski, F. Fontoura, and A. Barta. Querying xml
streams. Into appear in the VLDB Journal, 2004.

[13] W. Y. Lam, W. Ng, P. Wood, and M. Levene. Xcq: Xml
compression and querying system. InProc. of the Twelfth
Int’l World Wide Web Conf., 2003.

[14] Q. Li and B. Moon. Indexing and querying xml data for
regular path expressions. InVLDB 2001, 2001.

[15] H. Liefke and D. Suciu. Xmill: an efficient compressor for
xml data. InProc. of the ACM SIGMOD Conf. on
Management of Data, 2000.

[16] B. Ludascher, P. Mukhopadhyay, and Y. Papakonstantinou. A
transducer-based xml query processor. InProc. of the 28th
VLDB Conference, 2002.

[17] B. Martin and B. Jano. Wap binary xml content format, w3c
recommendation.http://www.w3.org/TR/wbxml/ ,
24 June 1999.

[18] D. Megginson and D. Brownell. Sax.
http://www.saxproject.org/ .

[19] J. Myllymaki. Effective Web data extraction with standard
XML technologies. InProceedings of the Tenth International
World Wide Web Conference, Hong Kong, May 2001.

[20] D. Olteanu, H. Meuss, T. Furche, and F. Bry. XPath:
Looking forward. InProc. of the EDBT Workshop on XML
Data Management (XMLDM), volume 2490 ofLNCS, pages
109–127. Springer, 2002.

[21] Oracle. Oracle xml db.
http://www.oracle.com/xml .

[22] S. Pal, J. Marsh, and A. Layman. A case against
standardizing binary representation of xml. InWorkshop on
Binary Interchange of XML Information Item Sets, 2003.

[23] F. Peng and S. S. Chawathe. XSQ: Streaming XPath Queries.
[24] J. F. N. Raghav Kaushik, Philip Bohannon and H. F. Korth.

Covering indexes for branching path queries. InSIGMOD
2002, 2002.

[25] N. Sundaresan and R. Moussa. Algorithms and programming
models for efficient representations of xml for internet
applications. InProc. of the Tenth Int’l World Wide Web
Conf., 2001.

[26] The Apache Project. Apache xindice.
http://xml.apache.org/xindice/ .

[27] The Apache Project. Xerces-c++ version 2.3.0.
http://xml.apache.org/xerces-c/ .

[28] The World Wide Web Consortium.Document Object Model
(DOM). http://www.w3.org/DOM.

[29] The World Wide Web Consortium.Extensible Markup
Language (XML). http://www.w3.org/XML.

APPENDIX

A. XTALK SPECIFICATION

doc ::= ’X’ versionid int (’p’ pi)*
’E’ element (’p’ pi)*

versionid ::= byte

element ::= string int attr* int child*

child ::= (’s’ string)
| (’E’ element)
| (’p’ pi)

attr ::= string string

pi ::= string string

string ::= int utf8

utf8 ::= (byte array of valid utf8 character data)
int ::= (4 byte big-endian unsigned integer)

Constraints:
doc:
Total number of pi occurrences must equal the value of the int + 1.
element:
String must abide by the XML 1.0 restrictions on tag names. Total
number of attr occurrences must equal the value of the preceding
int. Total number of child occurrences must equal the value of the
preceding int.
attr:
First string must abide by XML1.0 restrictions on attribute names.
Second string must abide by XML1.0 restrictions on normalized
attribute values.

353

DBLP DBLP RE RE RE RE RE RE RE RE RE
Method PARSE QUERY QUERY1 QUERY2 QUERY3 2.5 5 10 20 40 60
Xalan-J N/A N/A 42.701 42.731 42.972 2.123 2.854 4.437 8.212 22.052 42.701
Xalan-C N/A 1804.765 17.024 16.994 15.993 0.631 1.241 2.464 5.088 10.935 17.024
Xerces-C 30.574 49.360 8.182 10.114 8.272 0.391 0.721 1.412 2.774 5.588 8.182
Expat 9.203 15.733 2.153 3.695 2.714 0.130 0.230 0.441 0.811 1.572 2.153
XTalk 4.376 10.375 1.182 2.353 1.372 0.070 0.111 0.210 0.400 0.791 1.182
Skip 4.887 9.283 0.360 2.363 1.442 0.030 0.040 0.050 0.110 0.210 0.360
Token 4.115 9.754 1.112 2.263 1.302 0.070 0.110 0.200 0.381 0.761 1.112
Token+Skip 4.667 8.653 0.370 2.263 1.402 0.030 0.040 0.060 0.100 0.220 0.370

Table 2: Numerical results of experiments. Run times are in seconds.

B. EXPERIMENT DETAILS

B.1 DTD for Real Estate Dataset
<!ELEMENT REALESTATE (CITY+)>
<!ELEMENT CITY (#PCDATA|PROPERTY)*>
<!ATTLIST CITY NAME CDATA #IMPLIED>
<!ELEMENT PROPERTY (URL,IMAGEURL,ADDRESS,TYPE,AGE,SQFT,BEDROOMS,

BATHROOMS,GARAGE,LOTSIZE,DESCRIPTION,LISTINGS)>
<!ELEMENT URL (#PCDATA)>
<!ELEMENT IMAGEURL (#PCDATA)>
<!ELEMENT ADDRESS (STREET,CITY,STATE,ZIPCODE)>
<!ELEMENT STREET (#PCDATA)>
<!ELEMENT STATE (#PCDATA)>
<!ELEMENT ZIPCODE (#PCDATA)>
<!ELEMENT TYPE (#PCDATA)>
<!ELEMENT AGE (#PCDATA)>
<!ELEMENT SQFT (#PCDATA)>
<!ELEMENT BEDROOMS (#PCDATA)>
<!ELEMENT BATHROOMS (#PCDATA)>
<!ELEMENT GARAGE (#PCDATA)>
<!ELEMENT LOTSIZE (#PCDATA)>
<!ELEMENT DESCRIPTION (#PCDATA)>
<!ELEMENT LISTINGS (LISTING+)>
<!ELEMENT LISTING (PRICE)>
<!ATTLIST LISTING DATE CDATA #IMPLIED>
<!ATTLIST LISTING ID CDATA #IMPLIED>
<!ELEMENT PRICE (#PCDATA)>
<!ATTLIST PRICE CURRENCY CDATA #IMPLIED>

B.2 XSL Query for DBLP Dataset
<xsl:template match="/dblp">

<RESULT>
<xsl:for-each select="inproceedings[author[text() = ’Peter P. Chen’]]">

<YEAR><xsl:value-of select="year"/></YEAR>
<TITLE><xsl:value-of select="title"/></TITLE>

</xsl:for-each>
</RESULT>

</xsl:template>

B.3 XSL Query for Real Estate Dataset
<xsl:template match="*|@*">

<xsl:copy>
<xsl:apply-templates select="@*"/>
<xsl:apply-templates select="*"/>
<xsl:apply-templates select="text()"/>

</xsl:copy>
</xsl:template>

<!-- RE-QUERY1 -->
<xsl:template match="/REALESTATE">

<RESULT>
<xsl:apply-templates select="CITY[@NAME = ’APTOS’]/PROPERTY"/>

</RESULT>
</xsl:template>

<!-- RE-QUERY2 -->
<xsl:template match="/REALESTATE">

<RESULT>
<xsl:for-each select="CITY/PROPERTY[SQFT > 1875 and SQFT < 2000

and ADDRESS/ZIPCODE = 95032]">
<AGE><xsl:value-of select="AGE"/></AGE>
<PRICE><xsl:value-of select="LISTINGS/LISTING/PRICE"/></PRICE>

</xsl:for-each>
</RESULT>

</xsl:template>

<!-- RE-QUERY3 -->
<xsl:template match="/">

<RESULT>
<xsl:apply-templates select="//ZIPCODE[text() = 95037]"/>

</RESULT>
</xsl:template>

354

