
 

 

ABSTRACT 
Delivering web pages to mobile phones or personal digital 
assistants has become possible with the latest wireless technology. 
However, mobile devices have very small screen sizes and memory 
capacities. Converting web pages for delivery to a mobile device is 
an exciting new problem. In this paper, we propose to use a ranking 
algorithm similar to Google’s PageRank algorithm to rank the 
content objects within a web page. This allows the extraction of 
only important parts of web pages for delivery to mobile devices. 
Experiments show that the new method is effective. In experiments 
on pages from randomly selected websites, the system needed to 
extract and deliver only 39% of the objects in a web page in order 
to provide 85% of a viewer’s desired viewing content. This 
provides significant savings in the wireless traffic and downloading 
time while providing a satisfactory reading experience on the 
mobile device. 
 
Categories & Subject Descriptors 
H.4.3 [Communications Applications]: Communications 
Applications - Information browsers; H.5.2 [User Interfaces]: 
User Interfaces - Graphical user interfaces (GUI); 
General Terms: Design, Algorithms, Human Factors 

Keywords: PDA (Personal Digital Assistant),   HTML, WWW 
(World Wide Web), Link Analysis   
 
1.  INTRODUCTION 
Web content is currently designed for the desktop personal 
computer (PC) with a big monitor and rich memory resources. PC 
users can use a convenient input device such as a mouse to retrieve 
any web page from any website. Downloading time is rarely a 
problem as the PCs are usually connected to the internet through 
high capacity lines and the large screen allows many irrelevant 
objects such as advertisements to be placed on the screen without 
overly distracting the user. 
In the past five years, many mobile devices with medium and small 
sized screen and limited memory have appeared. For example, it is 
now possible to browse the web using personal digital assistants 
(PDA) such as the Palm or Pocket PC.  The mobile phone, which is 
currently the most popular mobile device, has many features that 
make browsing the internet possible. However, these devices are 
not ideal platforms for surfing the web. First, the wireless 
bandwidth is quite limited and very expensive. Secondly, the screen 
size varies and can be very small, for example 120*90. Third, some 

devices, such as mobile phones, have very limited memory 
capability. Normally, the content of a single web page will be larger 
than what a mobile phone can hold.  
Researchers have spent a lot of effort in solving the problem of 
enabling such devices to view the web content in a satisfactory 
manner. Some of the solutions work in the push model, like [16], 
where the selected content is pushed to the PDA through a 
synchronization process. Others use pull model, like Opera 
browser, where the content is extracted and optimized. Normally, 
these methods display the whole web page. The disadvantage of 
this approach is the long downloading time when bandwidth is 
limited and the large amount of scrolling required in order to get to 
the relevant parts of the web page. 
This paper presents a system that provides automatic conversion of 
web content into a form that is optimized for mobile devices. Our 
approach is to extract and present only the important parts of the 
web page for delivery to the mobile device. Such a method saves 
not only download time but also the time spent scrolling on the 
small screen devices. Errors in extraction by the system can be 
corrected by allowing the user to request the whole page if they are 
not satisfied with the extracted content. If the extraction error can 
be kept at a minimal level, such a system will provide a more 
pleasant experience for surfing the web on a mobile device. 
The basic technology behind the approach is a ranking algorithm 
for elements of a web page. The idea behind the ranking algorithm 
is to first represent a web page as a graph model and then exploiting 
the graph structure to rank the elements. To obtain the graph, we 
first divide the page into inseparable basic elements. We assume 
that the user is entering a web page from a link. Based on the type, 
size, physical position shape and similarity to the anchor text of the 
in-link, we give each basic element an initial rank value. We use 
weighted edges to represent relationships between two basic 
elements. The weights are a function of attributes of the two 
elements, such as word similarity and physical proximity of the 
elements within the page. This graph representation of a web page 
is quite different from the commonly used tree-based analysis of 
web pages. It is predominantly semantic-based instead of syntax-
based, although it is possible to exploit syntactic information to 
improve the effectiveness of the representation.    
The graph model of a single web page is made up of hundreds of 
basic elements that are linked to each other in a very complex 
manner. Such structure is similar to the whole Internet, which is 
also made up of many interrelated web pages. The most successful 
ranking algorithm for web pages is a random walk model used by 
the Google search engine. The web is treated as a graph on which 
surfers move randomly from page to page according to the links on 
the page. The ranking of the web page is then the expected number 
of surfers visiting the page at any time.  
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We assume that the manner in which a person reads a web page is 
similar to how a surfer surfs the web. The reader enters the page 
through a link and is drawn to elements that are related to the 
anchor text in the link and are located in central positions on the 
page. After reading an element, the reader moves on to a highly 
related element. By modeling the strength of connections between 
elements according to their similarity, we are using a simplified 
model of the movement of the readers’ attention on the web page. 
We then rank the elements according to the expected number of 
readers reading the particular element at any time. Based on the 
rankings, we select a rectangle covering all the important elements 
of the web page and transmit the content of the rectangle. 
The contributions of this paper include a new approach for enabling 
pleasant surfing experience on mobile devices and a new model for 
processing HTML document. Rather than the traditional tree 
model, we convert the HTML document into a graph which allows 
us to use Google’s successful PageRank approach for finding 
important elements in the document. 
We organize the paper in the following way. In section 2, we give 
an overview of the system. In section 3, we will give the design of 
the system. In section 4 we will discuss the dataset, and describe the 
evaluation of the system. Section 5 is about related works.  In 
section 6, we will give our conclusion and the direction for future 
research.  
 
2.  CONVERTING A WEB PAGE  
     INTO A GRAPH 
2.1 Basic Elements 
To construct a graph from a web page, we first identify the nodes, 
which are the basic elements in the web page. Then we specify the 
edges of the graph which encode the relationships between pairs of 
basic elements. 
 Researchers have proposed different methods to divide an HTML 
page into logical blocks. For example, [5] proposed a visual based 
method to analyze the structure of a web page, and [2] provides a 
method to automatically understand the semantic structure of 
HTML pages based on detecting visual similarities of content 
objects. In our system, we use simpler objects as nodes in the graph: 
all the non-overlapping visible elements in an HTML page. We use 
the DOM interface provided by the web browser. From bottom up 
we identify nodes by using two simple rules: 
1. A visible object like an image, link or text paragraph will be a 

basic element if it is not overlapping with another child or its 
parent node.  

2. For overlapping objects, the minimal container of the two objects 
will be a potential element to be verified by the rule 1. The 
algorithm will seek from bottom up to locate the nearest 
common container, and the container will be treated as one node. 

For example, a web page may contain many links that are not 
overlapping with each other. Each of the links will be treated as 
basic element. Another web page may have a text paragraph with a 
link. Here we have two overlapping objects. The bigger one, the 
text paragraph, will be chosen to be checked by rule 1. If the text 
paragraph is not overlapping other elements at a higher level, it will 
be chosen, otherwise we will recursively search upward. In this 
manner, all the visible objects in a web page will be elements 
allocated to nodes in the graph..    
As shown below. Our algorithm will convert the original web page 
into a list of basic elements.  

 
Figure 1. Original HTML page 

 

Figure 2. Decompose the original HTML page 
 

2.2 Graph 
Assume that we have N basic elements. We will build a graph such 
that the sum of the weights coming out of each node is 1. This 
allows us to use the weight on the edge as the probability of a 
reader going to the next element along that edge.   
We first introduce an additional node S which can be considered as 
source of visitors to the web page. This node also serves as the sink 
where readers who stop reading at any particular element will go to. 
Based on the features of a basic element, we will connect it to the 
source S with a weight that represents its contribution to the topic of 
a web page.  We take the following features into consideration: 
1. Size (Ps): An element with bigger size is more important than 

a smaller one. The contribution of size to the importance of 
element i can be  calculated by       

∑
=

=
N
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jSizeiSizeiPs
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where size is measured by the number of pixels. 
2. Text length (Pt): Element with longer visible text has higher 

importance. The length is the number of visible words. For 
example, A link with longer anchor text will draw more 
attention.  The contribution of text length can be calculated by: 

∑
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3. Match (Pm): Visitors from the source S will pay more 
attention to the content that is similar to S. We calculate the 
cosine similarity between the visible text in the element and 
the anchor text of S. We also use a stop word list including 
non-informative words that are commonly used in the internet 
context such as “click” “next” “more” “read” and others. 

4. Width/height ratio (Pr): The shape of an element reflects its 
importance. For example, for an image, a regular image is 
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usually more important than an irregular image. We use the 
following formula to calculate the value for images:  
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For different categories of elements we will use different 
formulas. For a text block we use a formula that favors higher 
Width/Height value: 
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5. Physical offset (Pp): Physical position is calculated by pixels. 
This is actually a very important feature. Element closer to the 
center point is more important than those near the edge of the 
page. We calculate the position information from, first, the 
physical distance between the center of the element and the 
center of the screen and second its horizontal offset 
information. Let the screen center be (XC, YC) and the center of 
element i be (Xi,Yi). Then 
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In this formula we specially take X offset into consideration 
because normally a web designer will put the important 
content in the center of the screen, while both left and right 
sides are for irrelevant or less important content. However, 
we did not make use of the vertical offset, as we see that 
important content in a web page can be very long. 
 
We normalize the distance with the diagonal of the whole 
HTML page. All the constant value in the formula is chosen 
according to an ordinary web page layout.    

 
The weight from the source S to node i is calculated by the function 
W(S,i) where 

∑
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The weight represents the probability that the reader’s eye goes to 
each of the element as he enters the web page; it is obvious that not 
all the elements are equally likely to be viewed. 
From each node i, we also set a weight W(i,S)=β, 0≤β≤1 to indicate 
the probability that the person stops reading at  node i and goes 
back to the source node S. 
As described earlier, the weight of the edge between any two basic 
elements is an evaluation of how likely the reader is to continue 
with the second element after reading the first. It is calculated using 
the following features:  
1. Distance Pd(i,j): The physical distance (in pixels) of two 

elements in the layout of an html page.  
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2. Horizontal offset (Ph): set as 1 if two element’s horizontal 
offset is the same, otherwise 0.  

3. Neighborhood (Pn):  Set as 1 if two elements are neighbors, 
otherwise 0.  

4. Match (Pm): the cosine similarity between the visible texts in 
the two elements.  

5. Width (Pw): Set as 1 if two elements have the same width, 
otherwise 0.  

 
The similarity S(i,j) between distinct elements i and j is calculated 
by the sum of the five features. For a node i, we have already used 
up a weight of β for the link back to the source.  Of the remaining 
amount (1-β), we use a fraction α as the loop back to itself to 
indicate that the user continues reading on the element for a period. 
Hence W(i,i)=(1-β)α. The weight from distinct nodes i to j is then 
calculated as  

.),(/),()1)(1(),(
1
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2.3 Random Walk on the Graph  
In section 2.2, we have described the algorithm to convert any web 
page into a graph, with the nodes representing the basic elements, 
and edges representing the relationship between the basic elements.  
In this way we convert an html web page into a structure that is 
similar to the whole internet. 
 
The most successful search engine is Google, which proposed the 
idea of “PageRank” to describe the importance or quality of a 
single webpage.  In our paper we will borrow the idea of PageRank 
to calculate the importance and quality of each basic node in a web 
page.  PageRank can be thought of as a model of user behavior, 
where a user is given a random web page and he will follow the 
links until he get bored. The probability of a user visiting a web 
page is proportional to the PageRank, which can be calculated 
iteratively by  

∑
∈

−+−=
Eij

tt iCjPRddiPR
),(

1 )(/)()1()(  

where PRt (i) is the PageRank of node i at time t, E is the set of 
edges, C(i) is the number of links going out of page i and (1-d) is 
the probability that the user will get bored and leave a certain web 
page back to the source.  Note that in PageRank all out links are 
treated equally. In contrast, we have more information based on the 
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similarity between elements, hence have given different weights to 
different links. 
 
We can similarly calculate a ranking that is proportional to the 
probability of a reader being at a node by using an iterative 
algorithm that does the following updates 
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where Rt(i) is the ranking of node i at time t. The value Rt(i) 
converges to a value that is proportional to the probability of being 
at the node (the first eigenvector of the transition matrix). 
 
3 EXTRACTING AND OPTIMIZING  
3.1 Extracting Relevant Elements 
The task of a search engine is to return the top results that match the 
search query. Google achieves this by first gathering the matched 
web pages and then returning them in the order of its PageRank.  
However, even though we have the ranking for each element in the 
web page, we cannot simply return the elements to the user by its 
rank. In a search engine, every individual webpage is independent 
and it does not matter if one web page is returned before or after 
another web page. But in our system, there are semantic and logical 
relationship between the elements and the order of relevant 
elements has to be returned as it appeared in the original web page. 
The user will feel unhappy if he gets an article extracted from a 
web page that looks nice but has the wrong ordering of the 
elements.  
Our design goal is return user the most relevant content, which is 
those with the highest ranks, but still need to keep the original look 
and feel on the mobile device. We use a simple heuristic to retrieve 
complete article based on the ranking of the elements. 

nd pick the node with the 
based on the rank score of 
dge weights, and T2 is a 

r topic or sentence of an 
m the top node following 
g to the main article.  T1 

inks that algorithm should 
al rank that an element 

t. 

a
t

irrelevant part of the document. We use linear functions f1(d) = 
1+C1d and f2(d)=1-C2d, which increases the tw on each link 
traversed, and decrease the threshold on rank tr to allow element 
with lower rank to join.  We decrease the threshold on the rank 
because we believe that relevant nodes further away from the center 
node may have lower rank.  
After we obtain the list, we will put the element in its original 
position in the web page and find a minimal rectangle that covers 
all the nodes. The procedure guarantees the integrity of the original 
content.  
 
3.2 Optimizing for Mobile Device 
In the previous section we obtained a rectangle within a web page 
that encloses the true article. The target rectangle may be larger 
than most mobile devices; we need optimize the content and make 
sure it looks nice on the end device.  
We have the following design goals:  
1. Minimize vertical scrolling action on small screen device and 

eliminate horizontal scrolling action.  
2. Maximize the similarity between the layout of the optimized 

content and the original web page. 
We convert the HTML layout so that the width of the re-rendered 
HTML page is smaller than the screen size. To maximize the 
similarity between the original page and the re-rendered page, we 
need to retain the HTML hierarchy structure of the original page. 
Our algorithm can be described as from Figure 3 to 5.  
 

 
Figure 3. Original HTML page 

 
Figure 4. Layout tree 

In Figure 3, the search engine indicates a larger area that will be 
returned to a mobile device. In Figure 4, the system will put the 
elements in the selected rectangle in a “Layout Tree” structure. The 
layout tree has the following features.    

1. Each element maintains hierarchical relationship in the 
original HTML tree. 

 

 
 
 
 
 
 
As shown  
 
in the algorithm, first, we sort the nodes a
highest rank. Then we set two thresholds 
the top node. T1 is a threshold on the e
threshold on the ranks.  
 
We assume that the top node is the cente
article; our task is to traverse the graph fro
the links to reach all nodes that also belon
is used to set the minimal weight on the l
follow, and T2 is used to set the minim
needs in order to be considered as relevan

Select () 
{    
     list.insert(topnode); 
     T1= I(S,topnode); 
     T2=R(topnode); 
     while(node=list.getNext()!=NULL)
     { 

d=Distance(topNode,node);   
tw=f1(d)*T1; 
for(each ni W(node, ni)>tw) 
{ 
 tr=f2(d)*T2; 
     if(R(ni)>tr) 
       { 
            list.insert(ni); 

} 
}  

} 
 } 
 

 
As the algorithm moves away from the top node (calculated by 
d=Distance(topNode, node), the number of links between topNode 
nd node), we increase the threshold tw on the weight. Otherwise, 
he algorithm may traverse a weak link and reach to the center of an 

2. Each node has a rectangle data that records the area that it 
occupies in original HTML page.  

3. Children of the same parent node are at the same hierarchical 
level in the original HTML tree.  
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The parent node’s rectangle is the minimal rectangle that covers all 
the children’s rectangles. 

 
Figure 5. Optimized result 

  
The layout tree is built bottom-up, As seen in Fig 4, suppose node 
B, C, D is at the same hierarchical in the original HTML tree, so we 
put it under the node M and set the rectangle of M as the minimal 
rectangle that covers B C D, then M and A shares the same parent 
nodes, and so on.  
 
The algorithm to re-render the HTML can be described as the 
following recursive algorithm 
Render(node) 
{    
    if( node.child=NULL )   return node.HTML;   
    if(node.width>Screen_Width)   

{ //if larger than the screen, recursively call each child. 
    for(each child for node) 
          result  + = render (node.nextChild);   
 }  
else 
{    //The screen is wide enough to put all child nodes   
         for( each child for node) 
          result  + = node.nextChild.HTML;   
} 

} 
 
If we call Render() with root node as parameter, it will return the 
optimized HTML page. Suppose the root’s width is wider then the 
small screen, the algorithm recursively call render with to nodes N 
and I to process each sub tree. If the node N’s width is still wider 
than the screen, we recursive call Render(A) and Render(M). At the 
node M, suppose it is not wider than the screen width, so we return 
B C D’s HTML source. In case when the width of basic element is 
larger than the window, we will zoom in the content to fit the 
screen. Figure 5 shows the result. 
 
4. EXPERIMENT RESULT AND ANALYSIS 
We have implemented the system to test our ideas. We have two 
goals in the system. The first is to satisfy the user’s information 

need. We try to deliver all the information that a user wants in a 
web page. The second is to save the bandwidth and minimize 
scrolling in the mobile device. We will use the following measure 
to evaluate the effectiveness of the system.  
1. The recall value R: 
R=(retrieved elements that are relevant)/(all the relevant elements) 
(We calculate by the area it occupies in the web page) 
 
2. The percentage of returned elements of the extraction: 
Return=(number of retrieved elements)/(number of elements on the 
web page) 
It is preferred that the system deliver as little content as possible 
while achieving the high average recall. 
We created the test data in the following manner.  
First, we randomly selected 158 websites from Google directory, 
under the category of news. From each web site we chose an 
average of 5 web pages and recorded the anchor text of the links 
that lead to the pages.  
Second, for each web page, we allowed a user read the anchor text. 
Here we require that the anchor text is made up of meaningful 
sentence, rather than link like “read” or “click”. We ask the user to 
use the mouse to specify the area that she wanted to read on mobile 
device. We recorded the web site name, the anchor text, and the 
area specified by the user.  We use a total of three different users 
for this task. 
In this manner, we collected altogether 788 web pages. We further 
divided the set for design and evaluation purposes. We set aside 
580 sample pages to use in designing the system and adjusting the 
parameters. The remaining 208 samples are never seen and used 
only for evaluation. The design set and evaluation set do not share 
any page from the same web site.  
We set a target average recall rate as the goal, and try to obtain a 
system that satisfies the recall rate using the design set. We then 
evaluate the return rate in the delivery on both the design and 
evaluation set. The return rate on the evaluation set should be a fair 
indication on future performance as we have never seen the pages 
during the design process. For the experiment we set the target 
average recall to be 85%. We did not use 100% because many of 
the elements selected by the user are actually ambiguous and hence 
the additional benefits of achieving total recall are small. Secondly, 
we believe on the mobile device people not would prefer to use the 
limited resource to read the most important content. In most cases 
we do not attach the similar importance for completeness as we do 
on desktop computer. We compare our system with three different 
algorithms.  
1. Simple Match: We calculate cosine similarity between the 

anchor texts with every basic element. We select all the 
elements where the similarity is above a threshold and return 
elements in the smallest rectangle surrounding the selected 
elements. 

2. Extended Match: Based on the result of the simple match, we 
do a second round calculation to calculate the cosine similarity 
between selected elements with the other elements. If the 
similarity is above certain threshold, we add the new element 
to selected list and return elements in the smallest rectangle 
surrounding the selected elements. 

3. Initial Ranking: We give each element an initial rank and 
weight as described in section 2.2 and return the elements in 
the smallest rectangle surrounding the elements with initial 
ranking above a threshold.  
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4. Full implementation of our algorithm, the initial condition is 
set the same as 3. We improve it with our random walk and 
extraction algorithm.   

 
Table 1: Experiment Result 

Method Recall_l Return_1 Recall_2 Return_2 
1 0.55 20.8% 0.62 32.4% 
2 0.71 85.9% 0.72 78.1% 
3 0.72 65.9% 0.75 63.5% 
4 0.86 39.3% 0.85 38.2% 

 
In the table, “Recall_1” and “Return_1” are the experiment result 
on design set which is used to select thresholds and to set the values 
of other parameters. “Recall_2” and “Return_2” are the result on 
the evaluation set. In our experiment, we set β=0.25, α=0.85, 
W1=1, W2=1, W3=3, W4=1 and W5=2. The “word match” and 
“extended match” algorithms can only reach to maximum recall of 
0.55 and 0.71 respectively no matter how we set the parameters. 
For the “initial ranking” method a recall of 0.72 can be achieved, 
65% of the elements on the web page need to be delivered. Initial 
ranking really provide valuable additional information, but it is not 
sufficient. We need information from the graph in order to achieve 
better performance. With our algorithm we just need to deliver 
39.3% to achieve a better recall. In the evaluation set, we observed 
a similar pattern.  
On average the algorithm need to return only about 38% of all the 
elements in a web page to reach a recall above 0.85. We believe 
this result is encouraging for mobile device. First of all, 38% of the 
elements do not mean only 62% of traffic savings. Actually the 
saving in bandwidth is much higher because most of the elements 
that are removed are usually multimedia elements or 
advertisements.  
Secondly, 0.85 of recall does not mean that user normally does not 
get a full article. We checked the samples where the algorithm fails 
to work well. It is usually because the anchor text of the link is 
irrelevant to the topic of the web page. In addition to that, under our 
current data collecting methods, it is likely that no algorithm can 
get a 100% recall, as errors caused by the ambiguity of the selection 
are probably unavoidable. For example, consider the following web 
page shown in Figure 6.   
   

 
Figure 6. Sample Page 

 
The red rectangle is what user defined as relevant. It covers the 
entire article but the edge is not precise. The black rectangle is what 
the algorithm returns as positive. The algorithm is 100% correct. 
But if we calculate the recall by our definition, it is only 0.90.  

The algorithm performs consistently on both the design and 
evaluation case. This shows that the algorithm is stable over 
different websites. Based on these results, we are confident that our 
system and implementation achieves the design goal.  However, all 
the sample websites are chosen from Google directory. It is likely 
that most of them are well organized and designed. The tester 
selected links with meaningful anchor text to click on and this is 
also helpful for the algorithm. More research work needs to be done 
in the future for the real world Internet where a lot of irregular web 
pages and misleading anchor text might exist.         

Ideally, the algorithm will be loaded in a personal gateway, which 
can be our own desktop computer. It will retrieve and render the 
page in its memory on the behalf of the mobile device, and use the 
algorithm to optimize the webpage before sending the optimized 
page to the mobile device wirelessly. Normally optimization of a 
web page can be done within 1 second on a normal Pentium III 
computer. Because the desktop is connected to Internet with cable 
and only small part of the page is delivered wirelessly, adding the 
optimization part will not greatly decrease the performance. A 
personal gateway will also facilitate personalization with less 
privacy issues. 
 
5.  RELATED WORK 
Google [1] proposed that web is a graph on which surfers move 
randomly from page to page according to the links on the page. We 
believe the manner in which a person reads a web page is similar to 
how a surfer surfs the web. The reader enters the page through a 
link and is drawn to elements that are related to the anchor text in 
the link and are located in central positions on the page. After 
reading an element, the reader moves on to a highly related 
element. Google returns the search result ranked by the page rank, 
while we rank the elements in a web page and return the top content 
for the mobile device. In [21], the author proposed topic distillation, 
which is the process of finding authoritative web pages that are 
relevant to a given query. These pages are called the “hubs” by the 
author. This is quite related to our work, as we are trying to find the 
“hub” of the topic within one single web page from an anchor text, 
using a similar algorithm. 
The SmartView system in [11] is based on idea of “divide and 
view”. The system performs partitioning of HTML document 
content into logical sections that can further be selected by the user 
and viewed independently from the rest of the document. The 
advantage of [11] is that it allows the user to randomly access any 
website and gives the user full control of which content to be 
displayed without predefining a “hot area”. However, the system in 
[11] does not handle the situation when a logical section is much 
bigger than the screen size of the target device, as is almost always 
the case if user is surfing a web page on a mobile phone. In [20], 
the authors proposed the idea of partitioning the web page into 
regions where each region has the same functionality or topic.    
This work is related to the research area of web page cleaning, 
which assumes that the useful information on the web is always 
accompanied by a large amount of noise such as banner, 
advertisement, navigation bars, copyright notices, etc. [14]. Usually 
a web cleaning system will study and compare a lot of samples 
from a single site and learn the rules to identify “what is noise?” 
However, we are solving the same problem from the different 
angle. Our system answers the question “what is not noise?” and 
our system does not require more than a single page from the same 
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site. This feature makes it a very ideal solution for mobile devices 
where we could not predict what web page a user may want to read.  
The web is not personalized and device independent. Most of the 
commercial systems create special web content for the mobile 
devices, for example, web Clipping [17], NTT i-Mode [18], 
AvantGo [16]. This solution has its limitation. The surfing 
experience and content is different, and the cost to maintain this 
service and to synchronize with the PC web is difficult.  We believe 
mobile Internet is an extension of existing Internet and we should 
develop systems that convert the content in the Internet to a format 
that is suitable for various small screen devices. The systems need 
to perform three functions, including scaling, manually authoring, 
transforming. The functions are summarized in [6]. For example, 
[7] and [8] use summaries of single or multiple pages to present to 
the user. [9] and [16] describe the process of manually extracting 
only the useful information from the existing web. [10] proposed a 
sophisticated method for performing transformation.  

6. CONCLUSION 
Our goal is to design a system that can deliver device independent 
content to mobile devices from any web page in order to fulfill the 
user’s information need on devices that have minimal computing 
power, screen and bandwidth available. We achieve this by ranking 
the importance of each element in a given web page and generating 
a customized “web” for mobile devices. In this paper, we proposed 
three interesting ideas. First, it is possible to represent the HTML 
web page with a graph structure. Second, based on our ranking 
algorithm that is similar to Google’s PageRank, the system can 
understand what the most important topic of a web page is. Third, 
we develop an algorithm to reformat and optimize the subset of the 
original web page for different mobile device. Our experiments 
show that in the vast majority of cases the proposed system 
provides the expected results, making it a useful system. 
With the current system, it is possible to navigate by following 
links that are located within the main article. However, on many 
sites, special navigation links are provided for navigating within the 
site. Most of these links are located on the top or side of the web 
page and will be removed by the current algorithm. Further work is 
required to handle these navigation requirements before the system 
is truly friendly for surfing on mobile devices. 
With the development of wireless technology and emergence of 
various mobile devices, people will not be limited to the desktop 
computer. We will access the Internet through all possible devices. 
Instead of building different webs for different devices, we strongly 
believe that the right direction is to convert and deliver the same 
content in different ways to different devices. 
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