

ABSTRACT
Delivering web pages to mobile phones or personal digital
assistants has become possible with the latest wireless technology.
However, mobile devices have very small screen sizes and memory
capacities. Converting web pages for delivery to a mobile device is
an exciting new problem. In this paper, we propose to use a ranking
algorithm similar to Google’s PageRank algorithm to rank the
content objects within a web page. This allows the extraction of
only important parts of web pages for delivery to mobile devices.
Experiments show that the new method is effective. In experiments
on pages from randomly selected websites, the system needed to
extract and deliver only 39% of the objects in a web page in order
to provide 85% of a viewer’s desired viewing content. This
provides significant savings in the wireless traffic and downloading
time while providing a satisfactory reading experience on the
mobile device.

Categories & Subject Descriptors
H.4.3 [Communications Applications]: Communications
Applications - Information browsers; H.5.2 [User Interfaces]:
User Interfaces - Graphical user interfaces (GUI);
General Terms: Design, Algorithms, Human Factors

Keywords: PDA (Personal Digital Assistant), HTML, WWW
(World Wide Web), Link Analysis

1. INTRODUCTION
Web content is currently designed for the desktop personal
computer (PC) with a big monitor and rich memory resources. PC
users can use a convenient input device such as a mouse to retrieve
any web page from any website. Downloading time is rarely a
problem as the PCs are usually connected to the internet through
high capacity lines and the large screen allows many irrelevant
objects such as advertisements to be placed on the screen without
overly distracting the user.
In the past five years, many mobile devices with medium and small
sized screen and limited memory have appeared. For example, it is
now possible to browse the web using personal digital assistants
(PDA) such as the Palm or Pocket PC. The mobile phone, which is
currently the most popular mobile device, has many features that
make browsing the internet possible. However, these devices are
not ideal platforms for surfing the web. First, the wireless
bandwidth is quite limited and very expensive. Secondly, the screen
size varies and can be very small, for example 120*90. Third, some

devices, such as mobile phones, have very limited memory
capability. Normally, the content of a single web page will be larger
than what a mobile phone can hold.
Researchers have spent a lot of effort in solving the problem of
enabling such devices to view the web content in a satisfactory
manner. Some of the solutions work in the push model, like [16],
where the selected content is pushed to the PDA through a
synchronization process. Others use pull model, like Opera
browser, where the content is extracted and optimized. Normally,
these methods display the whole web page. The disadvantage of
this approach is the long downloading time when bandwidth is
limited and the large amount of scrolling required in order to get to
the relevant parts of the web page.
This paper presents a system that provides automatic conversion of
web content into a form that is optimized for mobile devices. Our
approach is to extract and present only the important parts of the
web page for delivery to the mobile device. Such a method saves
not only download time but also the time spent scrolling on the
small screen devices. Errors in extraction by the system can be
corrected by allowing the user to request the whole page if they are
not satisfied with the extracted content. If the extraction error can
be kept at a minimal level, such a system will provide a more
pleasant experience for surfing the web on a mobile device.
The basic technology behind the approach is a ranking algorithm
for elements of a web page. The idea behind the ranking algorithm
is to first represent a web page as a graph model and then exploiting
the graph structure to rank the elements. To obtain the graph, we
first divide the page into inseparable basic elements. We assume
that the user is entering a web page from a link. Based on the type,
size, physical position shape and similarity to the anchor text of the
in-link, we give each basic element an initial rank value. We use
weighted edges to represent relationships between two basic
elements. The weights are a function of attributes of the two
elements, such as word similarity and physical proximity of the
elements within the page. This graph representation of a web page
is quite different from the commonly used tree-based analysis of
web pages. It is predominantly semantic-based instead of syntax-
based, although it is possible to exploit syntactic information to
improve the effectiveness of the representation.
The graph model of a single web page is made up of hundreds of
basic elements that are linked to each other in a very complex
manner. Such structure is similar to the whole Internet, which is
also made up of many interrelated web pages. The most successful
ranking algorithm for web pages is a random walk model used by
the Google search engine. The web is treated as a graph on which
surfers move randomly from page to page according to the links on
the page. The ranking of the web page is then the expected number
of surfers visiting the page at any time.

Copyright is held by the author/owner(s).
WWW 2004, May 17–22, 2004, New York, New York, USA.
ACM 1-58113-844-X/04/0005.

Using Link Analysis to Improve Layout on Mobile Devices

Xinyi Yin Wee Sun Lee
Department of Computer Science
National University of Singapore,

Singapore 117543.
yinxinyi@comp.nus.edu.sg

 Department of Computer Science and
Singapore-MIT Alliance,

National University of Singapore,
Singapore 117543.

leews@comp.nus.edu.sg

338

We assume that the manner in which a person reads a web page is
similar to how a surfer surfs the web. The reader enters the page
through a link and is drawn to elements that are related to the
anchor text in the link and are located in central positions on the
page. After reading an element, the reader moves on to a highly
related element. By modeling the strength of connections between
elements according to their similarity, we are using a simplified
model of the movement of the readers’ attention on the web page.
We then rank the elements according to the expected number of
readers reading the particular element at any time. Based on the
rankings, we select a rectangle covering all the important elements
of the web page and transmit the content of the rectangle.
The contributions of this paper include a new approach for enabling
pleasant surfing experience on mobile devices and a new model for
processing HTML document. Rather than the traditional tree
model, we convert the HTML document into a graph which allows
us to use Google’s successful PageRank approach for finding
important elements in the document.
We organize the paper in the following way. In section 2, we give
an overview of the system. In section 3, we will give the design of
the system. In section 4 we will discuss the dataset, and describe the
evaluation of the system. Section 5 is about related works. In
section 6, we will give our conclusion and the direction for future
research.

2. CONVERTING A WEB PAGE
 INTO A GRAPH
2.1 Basic Elements
To construct a graph from a web page, we first identify the nodes,
which are the basic elements in the web page. Then we specify the
edges of the graph which encode the relationships between pairs of
basic elements.
 Researchers have proposed different methods to divide an HTML
page into logical blocks. For example, [5] proposed a visual based
method to analyze the structure of a web page, and [2] provides a
method to automatically understand the semantic structure of
HTML pages based on detecting visual similarities of content
objects. In our system, we use simpler objects as nodes in the graph:
all the non-overlapping visible elements in an HTML page. We use
the DOM interface provided by the web browser. From bottom up
we identify nodes by using two simple rules:
1. A visible object like an image, link or text paragraph will be a

basic element if it is not overlapping with another child or its
parent node.

2. For overlapping objects, the minimal container of the two objects
will be a potential element to be verified by the rule 1. The
algorithm will seek from bottom up to locate the nearest
common container, and the container will be treated as one node.

For example, a web page may contain many links that are not
overlapping with each other. Each of the links will be treated as
basic element. Another web page may have a text paragraph with a
link. Here we have two overlapping objects. The bigger one, the
text paragraph, will be chosen to be checked by rule 1. If the text
paragraph is not overlapping other elements at a higher level, it will
be chosen, otherwise we will recursively search upward. In this
manner, all the visible objects in a web page will be elements
allocated to nodes in the graph..
As shown below. Our algorithm will convert the original web page
into a list of basic elements.

Figure 1. Original HTML page

Figure 2. Decompose the original HTML page

2.2 Graph
Assume that we have N basic elements. We will build a graph such
that the sum of the weights coming out of each node is 1. This
allows us to use the weight on the edge as the probability of a
reader going to the next element along that edge.
We first introduce an additional node S which can be considered as
source of visitors to the web page. This node also serves as the sink
where readers who stop reading at any particular element will go to.
Based on the features of a basic element, we will connect it to the
source S with a weight that represents its contribution to the topic of
a web page. We take the following features into consideration:
1. Size (Ps): An element with bigger size is more important than

a smaller one. The contribution of size to the importance of
element i can be calculated by

∑
=

=
N

j
jSizeiSizeiPs

1

)(/)()(

where size is measured by the number of pixels.
2. Text length (Pt): Element with longer visible text has higher

importance. The length is the number of visible words. For
example, A link with longer anchor text will draw more
attention. The contribution of text length can be calculated by:

∑
=

=
N

j
jLengthiLengthiPt

1

)(/)()(

3. Match (Pm): Visitors from the source S will pay more
attention to the content that is similar to S. We calculate the
cosine similarity between the visible text in the element and
the anchor text of S. We also use a stop word list including
non-informative words that are commonly used in the internet
context such as “click” “next” “more” “read” and others.

4. Width/height ratio (Pr): The shape of an element reflects its
importance. For example, for an image, a regular image is

339

usually more important than an irregular image. We use the
following formula to calculate the value for images:

 <<
=

otherwise

iHeightiWidthif
i

0

3)(/)(3.01
)Pr(

For different categories of elements we will use different
formulas. For a text block we use a formula that favors higher
Width/Height value:

 >
=

otherwise

iHeightiWidthif
i

5.0

4)(/)(1
)Pr(

5. Physical offset (Pp): Physical position is calculated by pixels.
This is actually a very important feature. Element closer to the
center point is more important than those near the edge of the
page. We calculate the position information from, first, the
physical distance between the center of the element and the
center of the screen and second its horizontal offset
information. Let the screen center be (XC, YC) and the center of
element i be (Xi,Yi). Then

)()()(
0

7.03.0
)(

/*2

44

)()(
1)(

22

22

idisioffsetXiPp
else

offsetXifOffsetX
ioffsetX

hScreenWidtXioffsetX

YcXc

YcYiXcXi
idis

+=

 <<
=

=

+

−+−
−=

In this formula we specially take X offset into consideration
because normally a web designer will put the important
content in the center of the screen, while both left and right
sides are for irrelevant or less important content. However,
we did not make use of the vertical offset, as we see that
important content in a web page can be very long.

We normalize the distance with the diagonal of the whole
HTML page. All the constant value in the formula is chosen
according to an ordinary web page layout.

The weight from the source S to node i is calculated by the function
W(S,i) where

∑
=

=
N

j
jSIiSIiSW

1

),(/),(),(and

Pp(i).*W5Pr(i)*W4
Pm(i)*W3Pt(i)*W2Ps(i)*W1i)I(S,

++
++=

The weight represents the probability that the reader’s eye goes to
each of the element as he enters the web page; it is obvious that not
all the elements are equally likely to be viewed.
From each node i, we also set a weight W(i,S)=β, 0≤β≤1 to indicate
the probability that the person stops reading at node i and goes
back to the source node S.
As described earlier, the weight of the edge between any two basic
elements is an evaluation of how likely the reader is to continue
with the second element after reading the first. It is calculated using
the following features:
1. Distance Pd(i,j): The physical distance (in pixels) of two

elements in the layout of an html page.

22

22

44

)()(
1),(

YcXc

YjYiXjXi
jiPd

+

−+−
−=

2. Horizontal offset (Ph): set as 1 if two element’s horizontal
offset is the same, otherwise 0.

3. Neighborhood (Pn): Set as 1 if two elements are neighbors,
otherwise 0.

4. Match (Pm): the cosine similarity between the visible texts in
the two elements.

5. Width (Pw): Set as 1 if two elements have the same width,
otherwise 0.

The similarity S(i,j) between distinct elements i and j is calculated
by the sum of the five features. For a node i, we have already used
up a weight of β for the link back to the source. Of the remaining
amount (1-β), we use a fraction α as the loop back to itself to
indicate that the user continues reading on the element for a period.
Hence W(i,i)=(1-β)α. The weight from distinct nodes i to j is then
calculated as

.),(/),()1)(1(),(
1
∑

=

−−=
N

k
kiSjiSjiW αβ

2.3 Random Walk on the Graph
In section 2.2, we have described the algorithm to convert any web
page into a graph, with the nodes representing the basic elements,
and edges representing the relationship between the basic elements.
In this way we convert an html web page into a structure that is
similar to the whole internet.

The most successful search engine is Google, which proposed the
idea of “PageRank” to describe the importance or quality of a
single webpage. In our paper we will borrow the idea of PageRank
to calculate the importance and quality of each basic node in a web
page. PageRank can be thought of as a model of user behavior,
where a user is given a random web page and he will follow the
links until he get bored. The probability of a user visiting a web
page is proportional to the PageRank, which can be calculated
iteratively by

∑
∈

−+−=
Eij

tt iCjPRddiPR
),(

1)(/)()1()(

where PRt (i) is the PageRank of node i at time t, E is the set of
edges, C(i) is the number of links going out of page i and (1-d) is
the probability that the user will get bored and leave a certain web
page back to the source. Note that in PageRank all out links are
treated equally. In contrast, we have more information based on the

340

similarity between elements, hence have given different weights to
different links.

We can similarly calculate a ranking that is proportional to the
probability of a reader being at a node by using an iterative
algorithm that does the following updates

)(),()(),()(1

1

1 SRiSWjRijWiR t
N

j

tt −

=

− +=∑

and

),()(
1

1 jRSR
N

j

tt ∑
=

−= β

where Rt(i) is the ranking of node i at time t. The value Rt(i)
converges to a value that is proportional to the probability of being
at the node (the first eigenvector of the transition matrix).

3 EXTRACTING AND OPTIMIZING
3.1 Extracting Relevant Elements
The task of a search engine is to return the top results that match the
search query. Google achieves this by first gathering the matched
web pages and then returning them in the order of its PageRank.
However, even though we have the ranking for each element in the
web page, we cannot simply return the elements to the user by its
rank. In a search engine, every individual webpage is independent
and it does not matter if one web page is returned before or after
another web page. But in our system, there are semantic and logical
relationship between the elements and the order of relevant
elements has to be returned as it appeared in the original web page.
The user will feel unhappy if he gets an article extracted from a
web page that looks nice but has the wrong ordering of the
elements.
Our design goal is return user the most relevant content, which is
those with the highest ranks, but still need to keep the original look
and feel on the mobile device. We use a simple heuristic to retrieve
complete article based on the ranking of the elements.

nd pick the node with the
based on the rank score of
dge weights, and T2 is a

r topic or sentence of an
m the top node following
g to the main article. T1

inks that algorithm should
al rank that an element

t.

a
t

irrelevant part of the document. We use linear functions f1(d) =
1+C1d and f2(d)=1-C2d, which increases the tw on each link
traversed, and decrease the threshold on rank tr to allow element
with lower rank to join. We decrease the threshold on the rank
because we believe that relevant nodes further away from the center
node may have lower rank.
After we obtain the list, we will put the element in its original
position in the web page and find a minimal rectangle that covers
all the nodes. The procedure guarantees the integrity of the original
content.

3.2 Optimizing for Mobile Device
In the previous section we obtained a rectangle within a web page
that encloses the true article. The target rectangle may be larger
than most mobile devices; we need optimize the content and make
sure it looks nice on the end device.
We have the following design goals:
1. Minimize vertical scrolling action on small screen device and

eliminate horizontal scrolling action.
2. Maximize the similarity between the layout of the optimized

content and the original web page.
We convert the HTML layout so that the width of the re-rendered
HTML page is smaller than the screen size. To maximize the
similarity between the original page and the re-rendered page, we
need to retain the HTML hierarchy structure of the original page.
Our algorithm can be described as from Figure 3 to 5.

Figure 3. Original HTML page

Figure 4. Layout tree

In Figure 3, the search engine indicates a larger area that will be
returned to a mobile device. In Figure 4, the system will put the
elements in the selected rectangle in a “Layout Tree” structure. The
layout tree has the following features.

1. Each element maintains hierarchical relationship in the
original HTML tree.

As shown

in the algorithm, first, we sort the nodes a
highest rank. Then we set two thresholds
the top node. T1 is a threshold on the e
threshold on the ranks.

We assume that the top node is the cente
article; our task is to traverse the graph fro
the links to reach all nodes that also belon
is used to set the minimal weight on the l
follow, and T2 is used to set the minim
needs in order to be considered as relevan

Select ()
{
 list.insert(topnode);
 T1= I(S,topnode);
 T2=R(topnode);
 while(node=list.getNext()!=NULL)
 {

d=Distance(topNode,node);
tw=f1(d)*T1;
for(each ni W(node, ni)>tw)
{
 tr=f2(d)*T2;
 if(R(ni)>tr)
 {
 list.insert(ni);

}
}

}
 }

As the algorithm moves away from the top node (calculated by
d=Distance(topNode, node), the number of links between topNode
nd node), we increase the threshold tw on the weight. Otherwise,
he algorithm may traverse a weak link and reach to the center of an

2. Each node has a rectangle data that records the area that it
occupies in original HTML page.

3. Children of the same parent node are at the same hierarchical
level in the original HTML tree.

341

The parent node’s rectangle is the minimal rectangle that covers all
the children’s rectangles.

Figure 5. Optimized result

The layout tree is built bottom-up, As seen in Fig 4, suppose node
B, C, D is at the same hierarchical in the original HTML tree, so we
put it under the node M and set the rectangle of M as the minimal
rectangle that covers B C D, then M and A shares the same parent
nodes, and so on.

The algorithm to re-render the HTML can be described as the
following recursive algorithm
Render(node)
{
 if(node.child=NULL) return node.HTML;
 if(node.width>Screen_Width)

{ //if larger than the screen, recursively call each child.
 for(each child for node)
 result + = render (node.nextChild);
 }
else
{ //The screen is wide enough to put all child nodes
 for(each child for node)
 result + = node.nextChild.HTML;
}

}

If we call Render() with root node as parameter, it will return the
optimized HTML page. Suppose the root’s width is wider then the
small screen, the algorithm recursively call render with to nodes N
and I to process each sub tree. If the node N’s width is still wider
than the screen, we recursive call Render(A) and Render(M). At the
node M, suppose it is not wider than the screen width, so we return
B C D’s HTML source. In case when the width of basic element is
larger than the window, we will zoom in the content to fit the
screen. Figure 5 shows the result.

4. EXPERIMENT RESULT AND ANALYSIS
We have implemented the system to test our ideas. We have two
goals in the system. The first is to satisfy the user’s information

need. We try to deliver all the information that a user wants in a
web page. The second is to save the bandwidth and minimize
scrolling in the mobile device. We will use the following measure
to evaluate the effectiveness of the system.
1. The recall value R:
R=(retrieved elements that are relevant)/(all the relevant elements)
(We calculate by the area it occupies in the web page)

2. The percentage of returned elements of the extraction:
Return=(number of retrieved elements)/(number of elements on the
web page)
It is preferred that the system deliver as little content as possible
while achieving the high average recall.
We created the test data in the following manner.
First, we randomly selected 158 websites from Google directory,
under the category of news. From each web site we chose an
average of 5 web pages and recorded the anchor text of the links
that lead to the pages.
Second, for each web page, we allowed a user read the anchor text.
Here we require that the anchor text is made up of meaningful
sentence, rather than link like “read” or “click”. We ask the user to
use the mouse to specify the area that she wanted to read on mobile
device. We recorded the web site name, the anchor text, and the
area specified by the user. We use a total of three different users
for this task.
In this manner, we collected altogether 788 web pages. We further
divided the set for design and evaluation purposes. We set aside
580 sample pages to use in designing the system and adjusting the
parameters. The remaining 208 samples are never seen and used
only for evaluation. The design set and evaluation set do not share
any page from the same web site.
We set a target average recall rate as the goal, and try to obtain a
system that satisfies the recall rate using the design set. We then
evaluate the return rate in the delivery on both the design and
evaluation set. The return rate on the evaluation set should be a fair
indication on future performance as we have never seen the pages
during the design process. For the experiment we set the target
average recall to be 85%. We did not use 100% because many of
the elements selected by the user are actually ambiguous and hence
the additional benefits of achieving total recall are small. Secondly,
we believe on the mobile device people not would prefer to use the
limited resource to read the most important content. In most cases
we do not attach the similar importance for completeness as we do
on desktop computer. We compare our system with three different
algorithms.
1. Simple Match: We calculate cosine similarity between the

anchor texts with every basic element. We select all the
elements where the similarity is above a threshold and return
elements in the smallest rectangle surrounding the selected
elements.

2. Extended Match: Based on the result of the simple match, we
do a second round calculation to calculate the cosine similarity
between selected elements with the other elements. If the
similarity is above certain threshold, we add the new element
to selected list and return elements in the smallest rectangle
surrounding the selected elements.

3. Initial Ranking: We give each element an initial rank and
weight as described in section 2.2 and return the elements in
the smallest rectangle surrounding the elements with initial
ranking above a threshold.

342

4. Full implementation of our algorithm, the initial condition is
set the same as 3. We improve it with our random walk and
extraction algorithm.

Table 1: Experiment Result

Method Recall_l Return_1 Recall_2 Return_2
1 0.55 20.8% 0.62 32.4%
2 0.71 85.9% 0.72 78.1%
3 0.72 65.9% 0.75 63.5%
4 0.86 39.3% 0.85 38.2%

In the table, “Recall_1” and “Return_1” are the experiment result
on design set which is used to select thresholds and to set the values
of other parameters. “Recall_2” and “Return_2” are the result on
the evaluation set. In our experiment, we set β=0.25, α=0.85,
W1=1, W2=1, W3=3, W4=1 and W5=2. The “word match” and
“extended match” algorithms can only reach to maximum recall of
0.55 and 0.71 respectively no matter how we set the parameters.
For the “initial ranking” method a recall of 0.72 can be achieved,
65% of the elements on the web page need to be delivered. Initial
ranking really provide valuable additional information, but it is not
sufficient. We need information from the graph in order to achieve
better performance. With our algorithm we just need to deliver
39.3% to achieve a better recall. In the evaluation set, we observed
a similar pattern.
On average the algorithm need to return only about 38% of all the
elements in a web page to reach a recall above 0.85. We believe
this result is encouraging for mobile device. First of all, 38% of the
elements do not mean only 62% of traffic savings. Actually the
saving in bandwidth is much higher because most of the elements
that are removed are usually multimedia elements or
advertisements.
Secondly, 0.85 of recall does not mean that user normally does not
get a full article. We checked the samples where the algorithm fails
to work well. It is usually because the anchor text of the link is
irrelevant to the topic of the web page. In addition to that, under our
current data collecting methods, it is likely that no algorithm can
get a 100% recall, as errors caused by the ambiguity of the selection
are probably unavoidable. For example, consider the following web
page shown in Figure 6.

Figure 6. Sample Page

The red rectangle is what user defined as relevant. It covers the
entire article but the edge is not precise. The black rectangle is what
the algorithm returns as positive. The algorithm is 100% correct.
But if we calculate the recall by our definition, it is only 0.90.

The algorithm performs consistently on both the design and
evaluation case. This shows that the algorithm is stable over
different websites. Based on these results, we are confident that our
system and implementation achieves the design goal. However, all
the sample websites are chosen from Google directory. It is likely
that most of them are well organized and designed. The tester
selected links with meaningful anchor text to click on and this is
also helpful for the algorithm. More research work needs to be done
in the future for the real world Internet where a lot of irregular web
pages and misleading anchor text might exist.

Ideally, the algorithm will be loaded in a personal gateway, which
can be our own desktop computer. It will retrieve and render the
page in its memory on the behalf of the mobile device, and use the
algorithm to optimize the webpage before sending the optimized
page to the mobile device wirelessly. Normally optimization of a
web page can be done within 1 second on a normal Pentium III
computer. Because the desktop is connected to Internet with cable
and only small part of the page is delivered wirelessly, adding the
optimization part will not greatly decrease the performance. A
personal gateway will also facilitate personalization with less
privacy issues.

5. RELATED WORK
Google [1] proposed that web is a graph on which surfers move
randomly from page to page according to the links on the page. We
believe the manner in which a person reads a web page is similar to
how a surfer surfs the web. The reader enters the page through a
link and is drawn to elements that are related to the anchor text in
the link and are located in central positions on the page. After
reading an element, the reader moves on to a highly related
element. Google returns the search result ranked by the page rank,
while we rank the elements in a web page and return the top content
for the mobile device. In [21], the author proposed topic distillation,
which is the process of finding authoritative web pages that are
relevant to a given query. These pages are called the “hubs” by the
author. This is quite related to our work, as we are trying to find the
“hub” of the topic within one single web page from an anchor text,
using a similar algorithm.
The SmartView system in [11] is based on idea of “divide and
view”. The system performs partitioning of HTML document
content into logical sections that can further be selected by the user
and viewed independently from the rest of the document. The
advantage of [11] is that it allows the user to randomly access any
website and gives the user full control of which content to be
displayed without predefining a “hot area”. However, the system in
[11] does not handle the situation when a logical section is much
bigger than the screen size of the target device, as is almost always
the case if user is surfing a web page on a mobile phone. In [20],
the authors proposed the idea of partitioning the web page into
regions where each region has the same functionality or topic.
This work is related to the research area of web page cleaning,
which assumes that the useful information on the web is always
accompanied by a large amount of noise such as banner,
advertisement, navigation bars, copyright notices, etc. [14]. Usually
a web cleaning system will study and compare a lot of samples
from a single site and learn the rules to identify “what is noise?”
However, we are solving the same problem from the different
angle. Our system answers the question “what is not noise?” and
our system does not require more than a single page from the same

343

site. This feature makes it a very ideal solution for mobile devices
where we could not predict what web page a user may want to read.
The web is not personalized and device independent. Most of the
commercial systems create special web content for the mobile
devices, for example, web Clipping [17], NTT i-Mode [18],
AvantGo [16]. This solution has its limitation. The surfing
experience and content is different, and the cost to maintain this
service and to synchronize with the PC web is difficult. We believe
mobile Internet is an extension of existing Internet and we should
develop systems that convert the content in the Internet to a format
that is suitable for various small screen devices. The systems need
to perform three functions, including scaling, manually authoring,
transforming. The functions are summarized in [6]. For example,
[7] and [8] use summaries of single or multiple pages to present to
the user. [9] and [16] describe the process of manually extracting
only the useful information from the existing web. [10] proposed a
sophisticated method for performing transformation.

6. CONCLUSION
Our goal is to design a system that can deliver device independent
content to mobile devices from any web page in order to fulfill the
user’s information need on devices that have minimal computing
power, screen and bandwidth available. We achieve this by ranking
the importance of each element in a given web page and generating
a customized “web” for mobile devices. In this paper, we proposed
three interesting ideas. First, it is possible to represent the HTML
web page with a graph structure. Second, based on our ranking
algorithm that is similar to Google’s PageRank, the system can
understand what the most important topic of a web page is. Third,
we develop an algorithm to reformat and optimize the subset of the
original web page for different mobile device. Our experiments
show that in the vast majority of cases the proposed system
provides the expected results, making it a useful system.
With the current system, it is possible to navigate by following
links that are located within the main article. However, on many
sites, special navigation links are provided for navigating within the
site. Most of these links are located on the top or side of the web
page and will be removed by the current algorithm. Further work is
required to handle these navigation requirements before the system
is truly friendly for surfing on mobile devices.
With the development of wireless technology and emergence of
various mobile devices, people will not be limited to the desktop
computer. We will access the Internet through all possible devices.
Instead of building different webs for different devices, we strongly
believe that the right direction is to convert and deliver the same
content in different ways to different devices.

7. ACKNOWLEDGMENTS
We would like to thank the anonymous referees for their insightful
comments.

8. REFERENCES
[1] Sergey Brin, Lawrence Page. The Anatomy of a Large-Scale

Hypertextual Web Search Engine. WWW 1998 / Computer
Networks 30(1-7): 107-117

[2] Yudong Yang, HongJiang Zhang. HTML Page Analysis
Based on Visual Cues In ICDAR (2001)

[3] Shipeng Yu, Deng Cai, Ji-Rong Wen, Wei-Ying Ma.
Improving pseudo-relevance feedback in web information

retrieval using web page segmentation. In Proceedings of the
11th World Wide Web Conference (WWW 12), 2003.

[4] Yu Chen, Wei-Ying Ma, Hong-Jiang Zhang. Detecting web
page structure for adaptive viewing on small form factor
devices. In Proceedings of the 11th World Wide Web
Conference (WWW 12), 2003.

[5] Xiao-Dong Gu, Jinlin Chen, Wei Ying Ma, Guo-Liang Chen
Visual Based Content Understanding towards Web
Adaptation. In: Second International Conference on Adaptive
Hypermedia and Adaptive Web-based Systems 2002, Spain.

[6] Trevor, J. Hilbert, D.M., Schilit, B.N., Koh, T.K: From
desktop to phone top, a UI for web interaction on very small
devices. Processings of the 14th annual ACM symposium on
user interface software and technology (UIST2001)

[7] Buyukkokten, O., Garcia-Molina, H., Paepcke, A., T.
Winograd. Power Browser: Efficient Web Browsing for
PDAs. In Proceedings of the ACM Conference on Computers
and Human Interaction 2000 (CHI’00)

[8] Buyukkokten, O., Garcia-Molina, H., Paepcke, A. Seeing the
Whole in Parts: Text Summarization for Web Browsing on
Handheld Devices. In the Proceedings of the 10th World Wide
Web Conference (WWW 10), 2001.

[9] Bickmore, T., Schilit, B. Digester. Device Independent Access
to the World Wide Web. In the Proceedings of the Sixth
International World Wide Web Conference (WWW 6), 1997.

[10] H. Bharadvaj, A. Joshi, and S. Auephanwiriyakul, “An active
transcoding proxy to support mobile web access,” Proceedings
of 17th IEEE Symposium on Reliable Distributed Systems,
West Lafayette, IN, USA, October 1998.

[11] Natasa Milic-Frayling, Ralph Sommerer. SmartView: Flexible
Viewing of Web Page Contents. In Proceedings of the 11th
World Wide Web Conference (WWW 11), 2002.

[12] Corin R. Anderson and Eric Horvitz. Web Montage: A
Dynamic Personalized Start Page. In Proceedings of the 11th
World Wide Web Conference (WWW 11), 2002.

[13] Corin R. Anderson, Pedro Domingos, and Daniel S. Weld.
Adaptive Web Navigation for Wireless Devices. In
Proceedings of the 17th International Joint Conference on
Artificial Intelligence (IJCAI-01). 2001

[14] Lan Yi, Bing Liu. Eliminating Noisy Information in Web
Pages for Data Mining. Proceedings of the ACM SIGKDD
International Conference on Knowledge Discovery & Data
Mining (KDD-2003), Washington, DC, USA, August 24 - 27,
2003

[15] Lan Yi, Bing Liu. "Web Page Cleaning for Web Mining
through Feature Weighting" To appear in Proceedings of
Eighteenth International Joint Conference on Artificial
Intelligence (IJCAI-03), Aug 9-15, 2003, Acapulco, Mexico

[16] AvantGo http://www.avantgo .com
[17] MOZAT http://www.mozat.com
[18] Web Clipping http://www.palmos.com/dev/tech/webclipping/
[19] NTT i-Mode http://www.ntt.co.jp/
[20] Ziv Bar-Yossef, Sridhar Rajagopalan. Template Detection via

Data Mining and its Applications. In Proceedings of the 11th
World Wide Web Conference (WWW 11), 2002.

[21] Soumen Chakrabarti. Integrating the Document Object
Model with Hyperlinks for Enhanced Topic Distillation and
Information Extraction. In the Proceedings of the 10th World
Wide Web Conference (WWW 10), 2001.

344

