
Staging Transformations for
Multimodal Web Interaction Management

Michael Narayan, Christopher Williams, Saverio Perugini, and Naren Ramakrishnan
Department of Computer Science

Virginia Tech, Blacksburg, VA 24061, USA
Email: {mnarayan, chwilli4, sperugin, naren}@vt.edu

Project website: http://pipe.cs.vt.edu

ABSTRACT
Multimodal interfaces are becoming increasingly ubiquitous with
the advent of mobile devices, accessibility considerations, and novel
software technologies that combine diverse interaction media. In
addition to improving access and delivery capabilities, such inter-
faces enable flexible and personalized dialogs with websites, much
like a conversation between humans. In this paper, we present a
software framework for multimodal web interaction management
that supports mixed-initiative dialogs between users and websites.
A mixed-initiative dialog is one where the user and the website take
turns changing the flow of interaction. The framework supports the
functional specification and realization of such dialogs using stag-
ing transformations – a theory for representing and reasoning about
dialogs based on partial input. It supports multiple interaction inter-
faces, and offers sessioning, caching, and co-ordination functions
through the use of an interaction manager. Two case studies are
presented to illustrate the promise of this approach.

Categories and Subject Descriptors
H.5.4 [Hypertext/Hypermedia]: Navigation; H.5.2 [User Inter-
faces]: Interaction Styles; F.3.2 [Semantics of Programming Lan-
guages]: Partial Evaluation

General Terms
interaction management in web applications, multimodal interfaces,
novel browsing paradigms.

Keywords
program transformations, partial evaluation, mixed-initiative inter-
action, out-of-turn interaction, web dialogs.

1. INTRODUCTION
Web interaction management is a well-studied topic and has pro-

duced many innovative solutions to support contextual interactions
with websites [5, 10]. Today’s web systems feature a diverse range
of interactive functionality, from preserving state across sessions
(e.g., shopping carts at amazon.com) to gracefully accommodat-
ing users’ interruptive activities such as pressing back buttons and
cloning windows ([38]; e.g., in form-based services). With the shift
of web access from the desktop to mobile devices such as PDAs,
tablet PCs, and 3G phones [4, 12, 17, 18, 32], and the advent of
novel multimodal interfaces, the importance of interaction man-
agement has only become accentuated. We posit that the logical

Copyright is held by the author/owner(s).
WWW2004, May 17–22, 2004, New York, NY USA.
ACM 1-58113-844-X/04/0005.

⇓

⇓

⇓

Figure 1: A site-initiated dialog in a US congressional site to
reach the webpage of the Democratic Senator from Georgia.

212

culmination of interaction management research will be to enable
flexible and personalized dialogs with websites [34], much like a
conversation between humans.

Viewing web interactions as dialogs can be very instructive, and
suggests useful metaphors. Imagine the interaction between a user
and a website to be a conversation between two participants. The
conversation typically begins asuser-initiated(since the user chose
to visit the site). The site then presents a choice of hyperlinks from
which the user is expected to make a selection. This step of the
conversation issite-initiatedsince by clicking on a(ny) hyperlink,
the user will be responding to the initiative taken by the website.
After following a link, the user might decide to pursue further links
(the initiative thus residing with the site), or press the back button
(hence retaking the initiative). Such an interaction where the user
and the site exchange initiative is called amixed-initiativedialog.

Mixed-initiative interaction (MII) has been well studied by the
speech interfaces, artificial intelligence planning, and discourse anal-
ysis communities [2] but has only recently begun to be investigated
in web interactions [35]. This is because the mechanisms for the
user to take the initiative in web interactions used to be limited.
With the emergence of the multimodal web and the availability of
multiple paradigms for interaction, these opportunities are now ex-
panding; thus setting the stage for MII to play a prominent role in
web interactions.

The primary development we are alluding to is, of course, the
emergence of the speech-enabled web [28]; technologies such as
SALT (Speech Application Language Tags; [1]) and X+V (XHTML
plus Voice; [6]) are ushering in documents that can talk and listen
rather than passively display content. The maturing of commercial
speech recognition engines [41], the naturalness of speech for con-
versational interaction, and its role in improving accessibility (i.e.,
for visually impaired people) have been key factors in the emer-
gence of this niche segment of multimodal browsing.

Speech is commonly perceived merely as a vocal substitute to
hyperlink access (i.e., ‘say’ a hyperlink label instead of clicking on
it) [21, 39]. Our approach, on the other hand, is to think of speech
as a way for the user to take the initiative in web interactions, and
henceaugmenthyperlink usage. While hyperlink access must, by
definition, be responsive to the initiative taken by the site, speech
interaction can be used to either respond to or take the initiative.
Our view of the multimodal web is hence one that enables flexible
dialogs, with rich opportunities for mixed-initiative interaction. We
focus our studies here on speech and hyperlink as the modes of
interaction although our framework will apply more generally to
new input mechanisms.

Motivating Example
Project Vote Smart (PVS; vote-smart.org) is a hierarchically orga-
nized site for information about US Congressional officials. The
first level in this site corresponds to choice of state, the second level
corresponds to branch of congress, the third level for party, and so
on1. Fig. 1 and Fig. 2 depict two dialogs of interaction with Vote
Smart; while both culminate in the webpage of Senator Miller, they
involve fundamentally different interaction sequences.

The dialog in Fig. 1 is site-initiated since the user progressively
clicks on presented hyperlinks (Georgia: Senate: Democrat) to
specify values for relevant politician attributes. All such browsing
interactions are responsive to the current solicitation; we sometimes
refer to such an interaction sequence as anin-turn sequence.

Fig. 2 describes a web session with capabilities for speech in-

1Since this writing, the Vote Smart site has been restructured into a
flat faceted classification; nevertheless the observations and central
ideas of this paper still apply.

⇓

⇓

⇓

Figure 2: A mixed-initiative dialog in a US congressional site to
reach the webpage of the Democratic Senator from Georgia.

put. At any stage in the dialog the user has the option of either
pursuing a hyperlink or speaking some utterance. In the top panel
of Fig. 2, when the website solicits for choice of state, the user re-
sponds with his choice of party (Democrat) instead, by speaking
out-of-turn. The user has hence taken the initiative. Such an inter-
action is called anout-of-turninteraction since the user is specify-
ing party information at the first level (when it is normally speci-
fied at the third level). As a result of this out-of-turn input, states
which do not have any Democratic politicians are pruned out (e.g.,
Alaska). Notice that the website continues to solicit for state, since
it remains unspecified. In conversational terms, we say that the
website has reclaimed the initiative, and is repeating its prompt for
input. At this point the user again speaks out-of-turn, this time
with branch information (Senate). More states are pruned out (e.g.,
Alabama and Arizona). After this step, the user reverts back to
in-turn mode, and responds to the site’s solicitation by clicking on
the ‘Georgia’ hyperlink; leading again, directly, to Senator Miller’s
webpage. While there can be only one purely in-turn interaction
sequence to arrive at a webpage—unless, of course, the designer
has hardwired multiple paths to a leaf content page—there could
be several involving out-of-turn interactions. Notice that in a single
out-of-turn interaction, more than one aspect could be specified.

Out-of-turn interaction is most appropriate when the user has a
focused information-seeking goal. Browsing is more suitable when

213

the user’s information seeking is exploratory. By enabling the user
to supply an out-of-turn input, at possibly multiple times, we facil-
itate information-finding tasks requiring both exploratory and fo-
cused behavior.

The aforementioned example is admittedly a simple form of mix-
ing initiative (calledunsolicited reporting[2]; for more compli-
cated flavors, see [2, 46]) but provides a powerful mechanism to
interact with websites. In particular, the capability for out-of-turn
interaction obviates the need to express interaction sequences di-
rectly in the browsing structure (i.e., as in parallel faceted brows-
ing classifications [24]). From an information seeking standpoint,
out-of-turn interaction is a flexible and unintrusive way to bridge
any mental mismatch between users and websites, by increasing
the opportunities for communicating partial input.

Contributions of this Paper
The goal of this paper is to flexibly support out-of-turn dialogs with
multimodal websites; we present a cross-platform web service ar-
chitecture that factors multimodal interaction management into the
three facets of interaction interfaces, a transformation engine, and
an interaction manager. Our main contributions can be summarized
alongside each of these facets:

1. Interaction interfaces support hyperlink and speech modes of
input and allow users to employ them uniformly in a multi-
modal session;

2. The transformation engine usesstaging transformations[13]—
a functional approach to dialog management—to specify, rea-
son about, and implement web dialogs without side-effects.
In particular, staging transformations allow us to automati-
cally enable existing sites for multimodal interaction, with-
out manual re-engineering;

3. The transformation engine further uses the staging notation
to implicitly capture state information in a web dialog, seam-
lessly supporting save, restore, and caching functionalities;

4. Both categorical and non-categorical modeling is supported
in the staging transformations framework, allowing it to be
applicable to the vast majority of existing sites.

5. The interaction manager built around these concepts helps
realize sessioning, caching, and co-ordination functionality;
and, most importantly,

6. the integration of the above ideas supports both in-turn and
out-of-turn modes of interaction in a unified manner, obviat-
ing the need to ever distinguish between them.

Finally, we argue that the factoring presented here can be easily
extended to support novel modalities of interaction in emerging ap-
plication domains.

2. BASIC APPROACH
To understand the staging transformations philosophy, let us re-

visit the dialogs of Figs. 1 and 2. We begin with the provocative
observation that both in-turn and out-of-turn interactions can be
supported by the same dialog programming model!

To see how, it is helpful to think of modeling the Vote Smart web-
site as the program of Fig. 3 (left) where the nesting of conditionals
reflects the hierarchical hyperlink structure and each program vari-
able denotes a hyperlink label. For an in-turn sequence, the top
series of transformations in Fig. 3 depicts what we want to happen.
For the interaction of Fig. 2, the bottom series of transformations
depicts what we want to happen. Notice that both sequences start
and end with the same representation, but take different paths.

The first sequence of transformations corresponds tointerpret-
ing the program in the order in which it is written, i.e., when the
user clicks on ‘Georgia,’ that variable is set to one and all other
state variables (e.g., ‘Alabama’) are set to zero, and the program
is interpreted. This leads to a simplified program that now solicits
for branch of congress. The second sequence of transformations
involves ‘jumping ahead’ to nested program segments and simpli-
fying them even before outer portions are evaluated. Such a non-
sequential evaluation is well known in the programming languages
literature to bepartial evaluation([26]; see Fig. 4), a technique
for specializing programs given some (but not all) of their input.
Thus, when the user says ‘Democrat’ out-of-turn, the program is
partially evaluated with this variable set to one (and ‘Republican’
set to zero). The simplified program continues to solicit for state
at the top level, but some states are now removed since the corre-
sponding program segments involve dead-ends. Notice that since
partial evaluation can be used for interpretation, it can support the
first interaction sequence as well.

This is the essence of our staging transformations framework:
writing a program to model the structure of the dialog and using a
program transformer tostageit. In addition, we must adopt a way
to map users’ partial inputs to assignments of values to program
variables.

There are many ways to model dialog structure as programs and
the choice of representation is dependent on both the structural
characteristics of the website and the interaction scenarios that must
be supported. For instance, we can take advantage of the levelwise
property of the politicians website and model the dialog as shown
in Fig. 5. In this representation, the user’s input is captured as as-
signment of values to only three categorical variables, whereas the
representation of Fig. 3 used many more variables, but all boolean.

The representation of Fig. 3 is suitable in a setting where we
would like to provide dynamic feedback to the user during the
course of an interaction. For instance, even after just supplying
‘Democrat’ at the outset, the user is provided feedback such as the
fact that there are no Democratic politicians (senators or otherwise)
in Alaska. The representation of Fig. 5 does not explicitly capture
such dependencies and is more appropriate in a database-driven
website where a lookup happens only after all relevant information
is collected. Furthermore, this representation assumes that there is
a way to map user’s inputs to the relevant categories (e.g., when
the user says ‘Alaska,’ it must be inferred that he is talking about
a state). There is no automatic means to obtain this categorical as-
signment by a program analysis. Whereas, in the representation
of Fig. 3, we would merely need to infer that ‘Democrat’ excludes
the possibility of being ‘Republican,’ a feature that can be captured
mechanically through the application of the program transforma-
tion (see end of Section 3.1).

Staging transformations thus provide a functional, implemen-
tation-neutral way to specify web dialogs; to fully realize our vision
of a flexible multimodal web interaction framework, we require:

• A greater variety of stagers to support practical web dialogs;

• A theory for reasoning about dialogs based on user input;

• A robust transformation engine based on commercial web
technologies;

• Interaction interfaces for capturing and communicating user
input; and

• an interaction manager providing session management, co-
ordination, and caching functionality.

214

Figure 3: Staging dialogs using program transformations. The top series of transformations mimic an in-turn dialog with the user
specifying (Georgia: Senate: Democrat), in that order. The bottom series of transformations correspond to a mixed-initiative dialog
where the user specifies (Democrat: Senator: Georgia), in that order.

int pow(int base, int exponent) { int pow2(int base) {
int prod = 1; return (base * base);
for (int i = 0; i < exponent; i++) }

prod = prod * base;
return prod;

}

Figure 4: Illustration of the partial evaluation technique. A general purposepower function written in C (left) and its specialized
version (with exponent statically set to 2) to handle squares (right). Automatic partial evaluators (e.g., C-Mix) use techniques such
as loop unrolling and copy propagation to specialize given programs.

politicians (state, branch, party){
if (unfilled (state))

/* prompt for state */

if (unfilled (branch))
/* prompt for branch */

if (unfilled (party))
/* prompt for party */

}

politicians (state, branch){
if (unfilled (state))

/* prompt for state */

if (unfilled (branch))
/* prompt for branch */

}

politicians (state){
if (unfilled (state))

/* prompt for state */
}

θ

Figure 5: Representing the politicians site using categorical variables and staging the dialog of Fig. 2 using partial evaluation.θ
denotes the empty dialog.

215

3. SYSTEM OVERVIEW AND DESIGN

3.1 Staging Transformations

Dialog Notation
We begin by introducing a notation to represent the structure of di-
alogs as well as the program transformations for staging them. The
notation is easiest to understand when only categorical variables are
involved. A purely in-turn sequence in the politicians site would be
denoted by:

I

state branch party

where theI indicates that an interpreter is used as the staging trans-
former. Similarly,

PE

state branch party

denotes a dialog staged with a partial evaluator (PE). An inter-
preter permits only inputs that are responsive to the current solici-
tation and proceeds in a strict sequential order; it results in the most
restrictive dialog. APE, on the other hand, allows utterances of
any combination of available input slots in the dialog. It allows
all 3! orderings of the politician attributes (13, if we allow multiple
attributes per utterance) to be achieved, without explicitly program-
ming for them. It is the most flexible of stagers. However, it is an
all-or-nothing stager that cannot enforce (i.e., require) a particular
ordering. With the above notation, hence just replacing theI in a
dialog with aPE dramatically changes a website from one that is
meant for browsing to one that supports out-of-turn interaction!

Stagers can be composed in a hierarchical fashion to yield di-
alogs comprised of smaller dialogs, or subdialogs. This allows us
to make fine-grained distinctions about the structure of dialogs and
the range of valid inputs. In this sense,

PE

a b c d

is not the same as PE
PE
a b

PE
c d

The former allows all4! permutations of{a, b, c, d} whereas the
latter precludes utterances such as≺c a b d�.

Another useful stager is the currier (C), which corresponds to the
standard definition of currying from the programming languages
literature. Programmatically, currying is a specialization of a func-
tion when some partial prefix of its arguments are known. From
a dialog viewpoint, a currier allows for multiple utterances to be
made at one time, with the restriction that these utterances must fill
in the dialog arguments in consecutive order, starting at the begin-
ning of the dialog.

To support non-categorical modeling such as shown in Fig. 3 we
require the ability to model webpages with multiple links, where
only one link can be pursued at a given time. The alternator stager
(A) addresses this requirement; while it can be implemented as a
program transformation, it is not particularly interesting to look at
it as such, since it has little meaning in other contexts.

Let us investigate how to specify a browsing interaction with the
politicians website. Since the partial inputs correspond to hyper-
link labels, the dialog representation must involve a hierarchical
composition over these labels:

A
I

ga A
I

s A
r d

I
h...

I
ak...

I
al... . . .

At the top-level of this dialog, there is a choice of multiple sub-
dialogs, all of which involve the specification of some state label.
We see that from the first page, there are links to pages for Georgia
(‘ga’), Arkansas (‘ak’), and so on. Notice that the order in which
we list these links does not matter since, from the viewpoint of the
A stager, only one of the corresponding subdialogs can be entered.
Looking at the link for Georgia, which is expanded in more detail,
we see that this subdialog consists of a further choice among sen-
ate (‘s’) versus house (’h) politicians, and so on. The I’s emphasize
that the levels must be entered in strict sequential order, reinforcing
the browsing paradigm. If we replace theIs with PEs, we will
effectively specify a mixed-initiative dialog.

Transformation Rules
With this notation in place, it is now possible to present the rules
that govern the behavior of the stagers when processing user input.
Notice that this is rather tricky as it might require a global restruc-
turing of the representation. Consider a breakfast dialog given by:

PE
C

e1 e2

C
c1 c2

C
b1 b2

wheree1, e2 are egg specification aspects,c1, c2 support coffee
specification, andb1, b2 specify a bakery item. The top-level PE
signifies that the three subdialogs can be entered in any order; the
C ’s denote that once entered each subdialog involves a second clar-
ification aspect. After the user has specified his eggs (e1), a clar-
ification of ‘how do you like your eggs?’ (e2) might be needed.
Similarly, when the user is talking about coffee (c1), a clarifica-
tion of ‘do you take cream and sugar?’ (c2) might be required,
and so on. Now, assume we stage this dialog using the sequence:
≺ c1 e1 c2 · · · �; the occurrence ofe1 is invalid according to the
dialog specification above, but we will not know that such an input
is arriving at the time we are processingc1. So in response to the
input c1, the dialog must be restructured as follows:

PE
C

e1 e2

C
c1 c2

C
b1 b2

• c1 →
C

C
c2

PE
C

e1 e2
C

b1 b2

By replacing the top-level PE stager with aC, it becomes clear that
the only legal input now possible must havec2. Once the coffee
subdialog is completed, the top-level stager will revert back to a
PE. Such dialog restructurings are necessary if we are to remain
faithful to the original specification. We formally capture such re-
structurings by using transformation rules to describe what happens
to a{dialog script, stager} pair when a given input is received.

In order to facilitate the description of these rules, the following
notation is used:

PE

(a : T)

This expression represents a dialog that consists of the dialog script
a and is being staged with a partial evaluator.(a : T) indicates that
a is a simple prompt, not a subdialog. The expression can be read,
‘This dialog is being staged using aPE and consists of the prompt
a, of typeT .’ Similarly,

C

(y : PE|C|A|T)

means that the dialog is staged using a currier.(y : PE|C|A|T)
indicates that the dialog script is either a single prompt (T), or a
subdialog itself being staged using a partial evaluator, a currier,
or an alternator. The expression〈x • a〉, as above, denotes the
transformation ofx when given the inputa, as mandated by the

216

PE|C|A
(x : PE|C|A|θ) = x (1)

〈PE|C|A
(a : T)

• a = θ〉 (2)

〈 PE

(x : PE|C|A|T)∗(a : T)(y : PE|C|A|T)∗
• a〉 =

PE

xy
(3)

〈 C

(a : T)(x : PE|C|A|T)∗
• a〉 =

C

x
(4)

〈 A

(x : PE|C|A|T)∗(a : T)(y : PE|C|A|T)∗
• a〉 = θ (5)

〈 PE

(x ` A)∗(y ` A)(z : PE|C|A|T)∗
• a〉 =

PE

x〈y • a〉z 〈y • a〉 6= y (6)

〈 PE

(x : PE|C|A|T)∗(y : PE|C|A)(z : PE|C|A|T)∗
• a〉 =

C

〈y • a〉PE
xz

〈y • a〉 6= y (7)

〈 C

(x : PE|C|A)(y : PE|C|A|T)∗
• a〉 =

C

〈x • a〉y 〈x • a〉 6= x (8)

〈 A

x∗1(y1 : PE|C|A)x∗2 . . . x∗n(yn : PE|C|A)x∗n+1

• a〉 =
A

〈y1 • a〉〈y2 • a〉 . . . 〈yn • a〉 〈yi • a〉 6= yi ∧ 〈xi • a〉 = xi (9)

〈 PE

(x : PE|C|A|T)∗
• ∗〉 =

PE

x
(10)

〈 C

(x : PE|C|A|T)∗
• ∗〉 =

C

x
(11)

〈 A

(x : PE|C|A|T)∗
• ∗〉 =

A

x
(12)

Figure 6: Reduction rules for simplifying dialog specifications.

transformation rules. Finallyx ` A indicates that the subdialogx
contains an alternator somewhere inside it (i.e., at a level below the
top-level stager). Regular expressions are used, when possible, to
simplify presentation.

These rules are shown in Figure 6, numbered for convenience.
Rule 1 represents a simplification rule that should be repeatedly
applied to the result of every reduction until no further simplifica-
tion is possible. The rest of the rules represent the reductions that
should take place when some input is given. These rules are listed
in order of precedence, so that the first applicable one fires.

Rule 2 generates the empty dialog (θ) when the given input matches
the only remaining prompt, irrespective of the stager. Rules 3–5
test if the given input is legal under the current top-level stager and
generate a pruned dialog. Rule 6 is specifically designed for di-
alogs involving non-categorical variables, and is discussed further
below. Rule 7 handles the type of transformation such as in the
breakfast dialog below. Similar transformations for a top-levelC
andA stagers are given by rules 8 and 9. Rule 10 will fit any in-
put to a dialog script that is being staged with a partial evaluator;
respectively for rules 11 (currier) and rule 12 (alternator). These
three rules represent the transformation that occurs when no input
can be filled, with the transformation simply generating the origi-
nal{dialog script, interaction stager} pair. The one other aspect of
these rules that needs to be mentioned is that the result of concate-
natingθ to any(x : PE|C|T) is x, which will occur when a dialog
or subdialog is completed.

The function of rule 6 is worth explaining in more depth. In gen-
eral, once a subdialog is entered, the user should have to complete
the subdialog before continuing with the rest of the dialog. This
requirement is enforced by rule 7. When using the alternator how-
ever, this restriction is not always desirable. In some situations, the

dialog designer may want to only allow the user to pick one choice
from a list of possible inputs to a dialog, but may still want the
top-level dialog to continue without entering the subdialog. This is
especially useful in non-categorical websites. Rule 6 enables this
behavior by checking for a list of alternators on the far left of the
list of subdialogs (when using a PE stager), and uses this informa-
tion as a cue to not enter these subdialogs. This allows the dialog
designer to choose either behavior as he desires.

We now demonstrate the staging of the interaction in Fig. 2 us-
ing the transformation rules (see Fig. 7). The beginning dialog is
similar to the modeling of the website shown earlier, but to trig-
ger the application of rule 6 the subdialogs are written in the form:

PE
<page><linktext>

with the link text appearing to theright of the page
description (the meaning is still preserved since the stager is aPE).
These substructures thus represent a link label and the page that the
label leads to (when dealing with a website that is not in tree form,
the page could be a reference to a page defined elsewhere). Recall
that this ‘page’ is typically a subtree in the original website.

In order to preserve space, subdialogs that will not be entered
are not completely shown. In some cases though, they are assumed
to contain certain attributes that prevent them from being removed
from the dialog. For example, it is assumed the Alabama (‘al’) has
some politicians who are Democrats (‘d’), and thus remains in the
dialog after the utterance ‘d.’ On the other hand, Alaska (‘ak’),
does not, so it is simplified out of the dialog when the user says ‘d’.
While Alabama does have Democratic politicians, none of them
are senators, and is thus simplified out of the dialog after the user
specifies Senator (‘s’).

After every input, the appropriate transformation rules are ap-
plied, and the resulting{dialog script, interaction stager} pair is
simplified. The simplified dialog is then used as the model to ac-

217

A
PE
A

P E
A
r d s

P E
...h

ga
PE
...ak

PE
...al . . .

• d →∗ A
PE
A

P E
s

P E
...h

ga
PE
...al . . .

A
PE
A

P E
s

P E
...h

ga
PE
...al . . .

• s→ A
PE
A

P E
s

P E
...h

ga
• s. . .

→ A
PE

A
P E

s
P E
...h

•s ga
. . .

→ A
PE
A

P E
s •s

ga
. . .

→ A
PE
A
θ

ga
. . .

⇒ A
PE
ga . . .

A
PE
ga . . .

• ga→ A
PE
ga • ga

→ A

θ
⇒ θ

Figure 7: Staging the interaction of Fig. 2 using transformation rules.

program backward (6, vol) forward (1, h)

(1) read (r, h); read (r, h); read (r, h);
(2) cArea = π*r 2; cArea = π*r 2;
(3) sArea = 2*cArea+2*r* π*h; sArea = 2*cArea+2*r* π*h;
(4) vol = cArea*h; vol = cArea*h; vol = cArea*h;
(5) print (sArea); print (sArea);
(6) print (vol); print (vol); print (vol);

Figure 8: Illustration of program slicing. (left) A program which takes the radius and height of a cylinder as input and com-
putes and prints its surface area and volume. (center) A static backward slice (of left) w.r.t. (6,vol). (right) A static forward
slice (of left) w.r.t. (1,h) (variable key: r = radius; h = height; cArea = circle area; sArea = surface area; vol = volume).

cept the next piece of input. This process is carried out until the
dialog is reduced toθ, indicating that the dialog has completed.
Each→ in Fig. 7 describes a transformation based on user input,
and each⇒ describes a simplification of the dialog structure.

For the first interaction, all of the transformations are not shown
for readability. The second interaction is shown in more detail.
First rule 9 is applied, which removes Alabama from the dialog,
since it is no longer applicable. This is followed by rule 6 to begin
simplifying the Branches page, followed by rule 9, which removes
House (‘h’) from the dialog. The next transformation is based on
rule 2, which removes the need to say Senate from the dialog, since
it has already been said. The resulting dialog is then simplified as
per rule 1 (denoted by⇒), to yield the new dialog.

Building a Robust Transformation Engine
We have presented a formal theory for reasoning about hierarchi-
cal staging notation and for simplifying dialogs; to target this the-
ory for real-time interaction management in websites, we repre-
sent interactions with websites as XML documents and implement
the transformations using XSLT technology. The XML documents
summarize the hyperlink structure, the hierarchical staging nota-
tion, and indirectly the vocabulary comprising of legal patial input.
While XML documents obey a tree-structured model, notice that
we can use id’s and refid’s to factor crosslinks, subdialogs in other
sites, and hence effectively model DAGs as well.

Recall that the stagers serve a dual role in our framework: they
enforce acceptability criteria on user input (i.e., by distinguish-
ing valid from invalid inputs) and they also capture the underlying
program transformation that must be performed, for valid input.
Therefore, in implementing the framework, we first verify user in-
put for legality (e.g., when the user says ‘Democrat’ out-of-turn,
we consult the dialog specification to determine if this is accept-
able) and then perform the desired transformation to accommodate
this partial input. Interestingly, all ofI, PE, C, andA staging

functionality can be implemented in terms of a more general pro-
gram transformation calledslicing.

Program slicing [8] is a technique used to extract statements,
whichmayaffect or be affected by the values of variables of interest
computed at some point of interest, from a program. A slice of a
program is taken w.r.t. a (a point of interest, a variable of interest)
pair, referred to as theslicing criterion. The point of interest is
specified with a line number from the program. The resulting slice
consists of all program statements which may affect or be affected
by the value of the variable at the specified point.

Fig. 8 illustrates simple program slicing. Slices such as that
shown in Fig. 8 (center), are called ‘backward slices’ [8]. The slice
is backwardsince this is the direction in which dependencies are
followed to their sources in the program. Contrast this with afor-
ward slice[25] which consists of the program statements affected
by the value of a particular variable at a particular statement (see
Fig. 8—right). Backward slices contain data and control predeces-
sors, while forward slices consist of data and control successors.
For an introduction to program slicing and applications, we refer
the interested reader to [8].

The transformation of websites, for I, C, PE, and A stagers, can
be modeled as a forward slice followed by a backward slice (w.r.t.
corresponding program variables). Intuitively, given valid input, a
forward slice is performed w.r.t. the corresponding program vari-
able to determine the terminal webpages that are reachable from
that point. These webpages are collected and back-propagated via
backward slicing, so that only those paths that reach these pages are
retained. Notice that these two operations implicitly capture exclu-
sions among program variables; e.g., when the user says ‘Demo-
crat’ the slices will remove any program segments that involve Re-
publicans. XSLT’s support for pattern-oriented programming is
particularly advantageous here since both forward and backward
slicing can be captured in the form of ancestor or descendant axis
types in location paths. Such a combination of forward and back-

218

ward slicing is closely related to other operators for pruning infor-
mation hierarchies, namely Sacco’s zoom operator [40].

3.2 Interaction Interfaces
To exercise our staging transformation framework, we devel-

oped two different input interfaces. The first (Extempore), lever-
ages users’ familiarity with toolbar interfaces, and provides a way
to supply out-of-turn textual input. The second (SALTII, for SALT
Interaction Interface, pronounced ‘salty’) utilizes a rapidly emerg-
ing technology for integrating speech into web browsing. Both in-
terfaces employ a common JavaScript toolkit which handles com-
munication with the interaction manager (see next section). The
toolkit also is designed to reduce the development cost for future
interaction interfaces (e.g., PDAs and 3G phones).

Extempore
The Extempore toolbar was developed using the XML User inter-
face Language (XUL) and JavaScript for the cross-platform Mozilla
web browser. It was designed to be non-invasive and to become ac-
tive only when the user is visiting a website capable of out-of-turn
interaction. By displaying a lightweight, text-based interface, Ex-
tempore leverages users’ prior knowledge to provide a familiar and
easy method of interaction. We will see an illustration of Extem-
pore in a new case study depicted in Fig. 10. It is important to note
that Extempore is embedded in the web browser, and not the site’s
webpages. It also is not a site-specific search tool that returns a flat
list of results (akin to the Google toolbar).

SALTII
The SALTII interface is built using the SALT XML-based markup
language, allowing one to embed speech tags in HTML to realize
webpages capable of speech input and output. The current SALTII
implementation requires the SALT voice recognition plugin for Mi-
crosoft Windows Internet Explorer 6.0. Using this interface, users
could potentially carry out an entire dialog with speech alone, using
speech for not only out-of-turn interaction, but in-turn as well. This
interaction interface is patterned after speech recognition technolo-
gies such as VoiceXML.

Future Interfaces
The JavaScript toolkit for the above interfaces was designed with
future development in mind and factors the entire system to roughly
five simple functions. Since it is developed using the vcXML-
RPC JavaScript library, the functionality of the interaction man-
ager can be remotely accessed, enabling shared context scenar-
ios [14]. This toolkit has been made available at the project’s web-
site (http://pipe.cs.vt.edu) for developers of other interaction inter-
faces.

3.3 Interaction Manager
The interaction manager primarily co-ordinates communication

between the transformation engine and the interaction interfaces.
Recall that the staging transformations framework treats in-turn in-
puts no differently from out-of-turn inputs, so it is desirable that the
interaction manager also preserve this uniformity. We first outline
the overall process by which interaction is established and man-
aged, followed by descriptions of the four constitutent subsystems
(see Fig. 9).

Preparing for Out-of-Turn Interaction
To situate the interaction manager as a dialog facilitator of both in-
turn and out-of-turn inputs, we have investigated a variety of mech-
anisms, ranging from those that involve the full participation of the
website, to proxy-based bypass schemes. The former requires a

DNS re-direction so that HTTP GET requests are forwarded to the
interaction manager (notice that out-of-turn inputs are received di-
rectly from the interaction interfaces). This solution also has the
attractive property that mixed-initiative interaction can be enabled
at as fine or coarse a level of granularity as desired (e.g., it can be
enabled for only certain subtrees). The proxy-based approach is a
less configurable solution and must be targeted very carefully, to
avoid loss of functionality. We adopt the former approach in this
paper. Once such an initial handshake is established, the interac-
tion manager is responsible for providing concurrent access to the
transformation engine, from potentially multiple interaction inter-
faces.

The interaction manager, now placed in the loop, evaluates if
out-of-turn interaction is possible, activates the interaction inter-
faces as appropriate, and mediates all interactions from this point.
Notice that intermediate dialog states might not correspond to any
of the site’s existing webpages (especially after some out-of-turn
interaction), so the interaction manager must mediate the dialog to
the fullest. For websites such as PVS, where the content sought
lies at the leaf level, notice that the interaction manager need revert
back to the original site only to display the leaf page(s).

Content Handling
Content handling determines the feasibility of out-of-turn interac-
tion, caches dialog states, and ensures currency of site representa-
tions. It is also responsible for retrieving, caching, and updating
content from websites.

To determine the feasibility of out-of-turn interaction, the con-
tent handler uses a simple HTTP GET request for a well-formed
XML document located at a defined URL. This document, if it ex-
ists, is meant to supply the representation of the site, and when an-
notated with stager tags, helps initialize the dialog representation.
For web sites that utilize dynamically generated content and struc-
ture, this URL could link to a script which retrieves a snapshot of
the current structure and content at the time of request. The content
file is then stored in a local cache database to facilitate fast transfor-
mation computations, for a duration that is either set by the content
provider or a system default, the former of which is suitable for
dynamically generated sites. The content handler also initiates the
activation of the Extempore toolbar or the SALT tags, as appropri-
ate. From this point, the content handler is responsible for ensuring
the currency of the representation and re-retrieving the file as ap-
propriate.

Notice that caching is trivially implemented by associating in-
termediate dialog states to content files generated over the course
of an interaction. A more sophisticated solution is to develop a
caching policy that exploits the structure of program transforma-
tions. For instance, if a user is requesting a partial evaluation w.r.t.
‘Democratic Senators,’ but the cache only contains a document that
has been evaluated w.r.t. ‘Democrat,’ we can partially evaluate this
document internally w.r.t. the remaining input (namely, ‘Senate’),
thus removing the need to partially evaluate from the root docu-
ment. While reducing storage complexity this approach also cre-
ates interesting design tradeoffs (including concerns about session
and user security).

Transformation Dispatch
The transformation dispatch is responsible for handling communi-
cation with the transformation engine. It handles connecting to the
transformation engine as well as notifying the interaction interfaces
if such a connection cannot be made (When the transformation en-
gine receives partial input, recall that it does not know, and need not
know, whether the partial input is a result of browsing or of supply-
ing some information out-of-turn). Finally, transformation dispatch

219

Figure 9: Multimodal web interaction framework architecture, depicting the central role played by the interaction manager.

supports the marshalling and un-marshalling of transformation re-
quests into messages, as well as the transmission and reception of
those messages.

Session Control
Session control has an interesting responsibility that differs from
most web systems’ concept of session management. Notice that
our notion of ‘state’ in a dialog is just the staging representation,
since it succinctly summarizes all remaining dialog options. Fur-
thermore, the transformation engine does not explicitly manipulate
state and is hence, a purely functional2 entity. Thus the goal of
session control is merely to distinguish one user’s interaction from
another. Due to our requirement for handling in-turn and out-of-
turn inputs uniformly, session tokens (we use a ten decimal digit
identifier) are required to be kept in two different places, the in-
teraction interface and the browser itself. This two-headed session
format negates the application of most modern session management
packages, which are primarily concerned with tracking browsing
interactions. A session manager was specifically designed to han-
dle this issue as well as to handle the normal session management
issues (e.g., back button browsing and threaded browsing).

Stylesheet Application
Stylesheet application is responsible for transforming the informa-
tion returned from the transformation engine into the site’s native
presentation format. In addition, it must introduce suitable gram-
mar tags into the HTML page (for the voice interface) by analyz-
ing the remaining dialog options. Currently we support (x)HTML,
WML, SALT, SVG, or any XML-based presentation format, and
this is determined by the interaction interface making the request.
Default stylesheets for these formats are made publicly available
from the project website.

3.4 Miscellaneous Design Decisions

Input Validation
Input validation for the Extempore toolbar interface is performed
directly by the reduction rules of Fig. 6 whereas input validation
for the voice interface is trapped on the client side by suitable gen-
eration of an SRGS grammar (at the Stylesheet Applicator).

Orienting Users
In order for out-of-turn interaction to be effective, the user must
have a basic understanding of what can be said. This is a well-
acknowledged issue by the speech interfaces community; as Yanke-
lovich [47] points out, ‘the functionality of [such] applications is
hidden, and the boundaries of what can and cannot be [said] are

2We use the word ‘functional’ in a programming languages conno-
tation (e.g., Haskell).

invisible.’ The semantics of out-of-turn interaction are more spe-
cific than free-form conversational input, because it merely allows
a site’s existing navigation structure to be realized in a different
order.

To better orient the user in their interactions, we implemented an
‘Input So Far:’ feedback label (in the browser status bar) in both
implementations that summarizes the partial input supplied thus
far (e.g., see Fig. 2). We also support meta-dialog enquiries (e.g.,
‘What may I say?’) via dialog reflectors. This is activated through
a ‘?’ button in Extempore and by a spoken query in SALTII, and in-
volves traversing the current representation for determining legally
specifiable inputs.

3.5 Implementation Details
The elegance of our implementation is reflected in the minimal

codebase required. The transformation engine is built using C and
the libxml, libxslt libraries, and is under 500 lines of code. This
invokes a 120-line transformation template for out-of-turn inter-
action, with 50 lines for handling input expansion and dialog re-
flection capabilities. The transformation engine is wrapped using
SOAP (Simple Object Access Protocol), effectively making it a
web service from the perspective of the interaction manager. Ex-
ternal communication thus happens through SOAP messages. Ex-
tempore is implemented in 50 lines of XUL and SALTII only re-
quires lines of code proportional to the size of the underlying gram-
mar. The JavaScript toolkit supporting new interfaces is about 300
lines of code. The interaction manager was developed using the
PHP scripting language, and is implemented in a total of 375 lines
of code, barring two external open source libraries (the NuSOAP
library and the vcXML-RPC library, for communication between
other layers).

4. APPLICATION CASE STUDIES
Besides the Vote Smart study used as our running example, we

implemented multimodal web interfaces for selected subtrees of the
ODP hierarchy (dmoz.org) and the CITIDEL repository of research
papers (citidel.org). Due to space considerations, we only discuss
the Vote Smart and ODP applications here. Dialogs in both applica-
tions were initialized as shown in the starting dialog representation
of Fig. 7.

Figs. 1 and 2 have already depicted interactions with the multi-
modal web interface to Vote Smart. Here, we actually employed a
four-level modeling (state, branch, party, district/seat) although we
have described only the first three levels (state, branch, party) thus
far in this paper, for ease of description.

Fig. 10 depicts a multimodal web interaction with the ODP HOME
subtree, this time using Extempore. ODP is a human-compiled di-
rectory of the web and is a constantly evolving categorization of
websites. A significant proportion of the links in ODP are actu-
ally symbolic links, where one subtree points to another, under a

220

⇓

Figure 10: Out-of-turn interaction with the HOME subtree of
the ODP hierarchy. In the top window, the user enters ‘Ice
Cream Maker’ out-of-turn using the Extempore toolbar, pro-
ducing the page shown below. Notice that two functional de-
pendencies are automatically triggerred:{Ice Cream Makers}
→ {Appliances, Consumer Information}.

different classification. For instance, ‘Recreation: Martial Arts’ ac-
tually points to the ‘Martial Arts’ subtree physically located under
‘Sports.’ It can be argued that the presence of symbolic links is ac-
tually foretelling of the mental mismatch anticipated by directory
compilers, and hencein-turn mechanisms have been hardwired to
better orient users. The use of out-of-turn interaction, in effect, ob-
viates the need for symbolic links by increasing the flexibility of
communicating partial input.

Input Expansion
In building both these applications, we have realized the impor-
tance of input expansion strategies to capture semantic relatedness
among dialog options. An example of a semantic constraint is when
the user says ‘Senior seat’ out-of-turn, we can also infer the choice
of ‘Senate’ (as opposed to ‘House’). This is because the functional
dependency{Senior seat} → {Senate} holds in the underlying do-
main. Such dependencies can be automatically inferred by sim-
ple association mining methods [31]; we identified 125 of them in
the Vote Smart site and more than 3,600 in just the ODP’s Home
subtree. An elegant by-product of such automatic input expansion
is that out-of-turn interaction can provide rapid shortcuts to de-
sired leaves, even at the root level. For instance, Washington, D.C.
has only one representative and no senators, and hence the follow-
ing dependency holds:{Washington, D.C.} → {House, Democrat,
District at Large}. Therefore, saying/clicking ‘Washington, D.C.’
at the top-level page uniquely identifies one congressperson and
transports the user directly to her webpage. Mining functional de-
pendencies for use in out-of-turn interaction is an interesting topic
by itself, and one that we intend to explore fully in a future paper.

Collapsing Transformations
Another practical consideration exists when only one leaf page (e.g.,
congressperson) remains as the result of a transformation. For

instance, in the current political landscape, the Democratic sena-
tor from Minnesota is occupying the senior seat, therefore saying
‘Minnesota Democrat Senator’ uniquely identifies a politician. In
such a case, we collapse the remaining series of hyperlinks (in-
volving seat) and return the webpage of the official directly to the
user (relieving her from having to click through these links).

Notice that no information is lost as a result of either automatic
input expansion or collapsing as a leaf webpage contains the values
for the facets under which it is classified.

5. EVALUATION
There are many ways to evaluate the framework presented here.

For instance, we can study user experiences with the deployed ap-
plications, characterize the framework by its support for model-
ing, and also investigate the ease of implementing new applications
within the framework.

User experiences with out-of-turn interaction are described in [33];
25 users were given information-finding tasks about U.S. politi-
cians and were free to use either in-turn or mixed-initiative inter-
actions to complete these tasks. Some of these tasks werenon-
oriented(meaning they could be performed with browsing alone, if
desired) and some wereout-of-turn-oriented(meaning they would
be cumbersome to perform via plain browsing). We found that
100% of the users utilized the out-of-turn interfaces when presented
with an out-of-turn-oriented task. Since the task type was not dis-
closeda priori, this result demonstrates that users are adept at dis-
cerning when out-of-turn interaction is desirable. Extempore and
SALTII interfaces were utilized equally effectively.

From an information-seeking standpoint, it is easy to see that our
use of out-of-turn interaction dramatically increases the number of
ways to reach a given webpage. For example, in Vote Smart, the
original 540 browsing sequences are now a small subset of 12,960
realizable sequences (540× 4!), where the length of each interac-
tion sequence is constant (this is not always the case; e.g., ODP).
This is a 2,300% increase in the number of sequences supported!
From a representational perspective, such increase comes through
withoutmodeling any more than the original 540 sequences. This
is in contrast to faceted browsing [24] which would cause an expo-
nential blowup in site structure. In fact, we do not even model the
original 540 distinctly as our nesting of dialog choices factors the
representation. Similarly, in ODP we observe a 44,400% increase
in the number of sequences supported in relation to the 1,411 orig-
inal browsing sequences.

New applications, especially hierarchical sites, are easily tar-
geted using the software framework presented here (see project
website for more information). Taxonomies (e.g., gams.nist.gov),
LDAP directories, database-driven indices (e.g., acm.org/dl), and
bioinformatics ontologies (e.g., www.gene-ontology.org) are ideal
for modeling in the staging transformations framework. The prop-
erty that these information sources share is that they all foster (and
sometimes require)focusedinformation-seeking behavior.

In contrast, consider a site such as the Internet movie database
(www.imdb.com), which is meant forexploratorybrowsing and
uses connections in social networks as a navigational metaphor.
Such a site is more cumbersome to model using staging transfor-
mations.

Another shortcoming of staging transformations is that the par-
tial input suppliable by the user is primarily of adeclarativenature,
and hence does not adequately supportproceduraltasks. For in-
stance, consider a task such as ‘Find the political party of the senior
senator representing the only state which has congresspeople from
the Independent party.’ It involves finding Vermont as the answer to
the ‘only state part’ (via out-of-turn interaction) and then using it in

221

anotherinteraction to find the political party of the senior senator
from that state. When tested with participants, we found that only
50% of the users successfully completed this task [33], because
the rest of them were attempting to continue the interaction after
answering ‘Vermont’ for the first part of the question. To support
such prolonged dialogs, staging tranformations must providecon-
structive operators; all staging operators considered in this paper
aredestructivein that valid partial input causes pruning of remain-
ing dialog options.

A final technological limitation pertains to speech interaction in
large sites (e.g., higher subtrees of ODP). In a grammar based ap-
proach such as used in SALT, large sites can involve a dramatic
growth in vocabulary, especially when we use a PE stager at a high-
level of composition. More robust statistical methods or other dia-
log abstraction capabilities must be investigated.

6. RELATED RESEARCH
Web interaction management emerged as a legitimate area of re-

search ever since researchers attempted to build stateful and re-
sponsive web applications on top of stateless protocols such as
HTTP [43]. Interaction management research is typically concerned
with issues such as automated delivery of static as well as dynami-
cally generated pages [36], sessioning, accommodating simultane-
ous users, concurrency control, stateful implementation of client-
side functionality such as cloning windows and pursuing back but-
tons [38], and domain-specific language (DSL) support for targeted
applications such as form-field interaction and database-centered
services (e.g.,<bigwig> [10] and MAWL [5]). Interestingly, a
significant body of this research has involved concepts from func-
tional programming (e.g., continuations, currying) [22, 37, 38].

Our work embraces this tradition and proposes the use of pro-
gram transformations for staging web dialogs. It thus casts the
problem of dialog control and management in a purely functional
framework, with attendant benefits. The modeling of interaction
undertaken here is reminiscent of the approach advocated by Mar-
chionini for designing information systems [29]. It also addresses
Dumais’s vision of a tighter coupling between structure and search
in information access [20].

The dialog notation presented here is part of a larger effort from
our group to ease the specification and realization of mixed initia-
tive dialogs [13]. This work has similar motivations to other for-
malisms aimed at capturing interactions with computer systems,
e.g., GOMS [15], strategies and scripts for information-seeking
(COR; [7]), the speech acts framework for office communication
systems [45], and structured discourse theory [23]. By emphasizing
turn management more than other aspects of dialogs (e.g., inten-
tion, plans, and goals), staging transformations is of reduced scope
than these efforts but more targeted for web interaction paradigms.

Another pertinent area of related research can be found in the
adaptive hypermedia community [3, 9, 11]. Here, an explicit user
model is built (e.g., from past interactions) which is then used as
the driver to support adaptive presentation and personalized inter-
action. Our philosophy, on the other hand, is that by enriching the
expressiveness with which users can supply partial input, we can
help them achieve their information-seeking goals better. Needless
to say, these two views can be fruitfully integrated.

The software framework proposed here is complementary to other
frameworks for interaction co-ordination [19, 27, 42], functional
web adaptation [16] and re-engineering of websites [22]. However,
the specific setting assumed here (i.e., out-of-turn interaction) is
different from those considered in these works. Our framework is
closer in motivation to systems like VoiceXML [30] which provide
support for creating mixed-initiative dialogs.

7. DISCUSSION
We have described a software framework for multimodal out-

of-turn interaction, thus laying the foundation for creating mixed-
initiative dialogs with websites. Our usage of out-of-turn interac-
tion is optional, unintrusive, and can be integrated into browsing
experiences at the user’s discretion. It also promotes a novel in-
terpretation of multimodal paradigms. For the designer, the frame-
work simplifies the process of integrating in-turn and out-of-turn
interaction using a uniform handling of both dialog specification
and implementation. Minimal modeling is required to re-engineer
existing sites.

The multimodal web view realized in this paper also extends the
idea of web access via voice [21, 39] and could be usefully ap-
plied in a variety of mobile browsing contexts (e.g., see [4, 12, 18]).
The framework was developed with future web access paradigms in
mind, beyond cell phones and PDAs. The factoring of the system
architecture into three components means that content providers
and developers need only concern themselves with the interfaces
and modalities they wish to support. An additional possibility we
are exploring is the idea of supporting interjection-style out-of-turn
interaction, wherein the browser can dynamically update content
while the user is supplying out-of-turn input. This feature is cur-
rently projected to utilize the SSU [44] software framework to pro-
vide real-time feedback to users, and alert them if something is
amiss. The current model of interaction management uses a coarser
level of dialog unit at which feedback is provided. Exploring these
issues will undoubtedly open up new research directions and addi-
tional applications for multimodal web interfaces.

8. ACKNOWLEDGEMENTS
The authors thank C. Queinnec (Université Paris) for helpful dis-

cussions and comments. This work is supported in part by US Na-
tional Science Foundation grant IIS-0136182.

9. REFERENCES
[1] Speech Application Language Tags (SALT) Specification.

Technical report, SALT Forum, July 2002. Version 1.0.
[2] J. F. Allen, C. I. Guinn, and E. Horvitz. Mixed-Initiative

Interaction.IEEE Intelligent Systems, Vol. 14(5):pages
14–23, September–October 1999.

[3] E. André and T. Rist. From Adaptive Hypertext to
Personalized Web Companions.CACM, Vol. 45(5):pages
43–46, May 2002.

[4] Y. Aridor, D. Carmel, Y. S. Maarek, A. Soffer, and
R. Lempel. Knowledge Encapsulation for Focused Search
from Pervasive Devices. InProc. WWW10, pages 754–764,
2001.

[5] D. L. Atkins, T. Ball, G. Bruns, and K. Cox. Mawl: A
Domain-Specific Language for Form-Based Services.IEEE
Transactions on Software Engineering, Vol. 25(3):pages
334–346, May–June 1999.

[6] J. Axelsson, C. Cross, H. Lie, G. McCobb, T. Raman, and
L. Wilson (eds.). Xhtml+voice profile 1.0. W3C Note,
December 2001.

[7] N. J. Belkin, C. Cool, A Stein, and U. Thiel. Cases, Scripts,
and Information Seeking Strategies: On the Design of
Interactive Information Retrieval Systems.Expert Systems
with Applications, Vol. 9(3):pages 379–395, 1995.

[8] D. W. Binkley and K. B. Gallagher. Program Slicing. In
Advances in Computers, volume 43, pages 1–50. 1996.

[9] P. De Bra, P. Brusilovsky, and G.-J. Houben. Adaptive
Hypermedia: From Systems to Framework.ACM Computing
Surveys, Vol. 31(4es), December 1999. Article No. 12.

222

[10] C. Brabrand, A. Møller, and M. I. Schwartzbach. The
<bigwig> Project.ACM Transactions on Internet
Technology, Vol. 2(2):pages 79–14, May 2002.

[11] P. Brusilovsky. Adaptive Hypermedia.User Modeling and
User-Adapted Interaction, Vol. 11(1–2):pages 87–110, 2001.

[12] O. Buyukkokten, H. Garcia-Molina, and A. Paepcke. Seeing
the Whole in Parts: Text Summarization for Web Browsing
on Handheld Devices. InProc. WWW10, pages 652–662,
2001.

[13] R. Capra, M. Narayan, S. Perugini, N. Ramakrishnan, and
M. A. Pérez-Quĩnones. The Staging Transformation
Approach to Mixing Initiative. In G. Tecuci, editor,Working
Notes of the IJCAI 2003 Workshop on Mixed-Initiative
Intelligent Systems, pages 23–29. AAAI/MIT Press, August
2003.

[14] R. Capra, M. A. Ṕerez-Quĩnones, and N. Ramakrishnan.
WebContext: Remote Access to Shared Context. InProc.
PUI, November 2001.

[15] S. K. Card, T. P. Moran, and A. Newell. Computer
Text-Editing: An Information-Processing Analysis of a
Routine Cognitive Skill.Cognitive Psychology, Vol.
12:pages 32–74, 1980.

[16] J. Chen, B. Zhou, J. Shi, H. Zhang, and Q. Fengwu.
Function-Based Object Model Towards Website Adaptation.
In Proc. WWW10, pages 587–596, 2001.

[17] Y. Chen, W.-Y. Ma, and H.-J. Zhang. Detecting Web Page
Structure for Adaptive Viewing on Small Form Factor
Devices. InProc. WWW12, pages 225–233, 2003.

[18] D. Cohen, M. Herscovici, Y. Petruschka, Y.S. Maarek, and
A. Soffer. Personalized Pocket Directories for Mobile
Devices. InProc. WWW11, pages 627–638, 2002.

[19] A. Coles, E. Deliot, T. Melamed, and K. Lansard. A
Framework for Coordinated Multi-Modal Browsing with
Multiple Clients. InProc. WWW12, pages 718–726, 2003.

[20] S. Dumais. Tightly Coupling Structure and Search. InProc.
SIGIR Workshop on Information Reduction, July 1997.

[21] J. Freire, B. Kumar, and D. Lieuwen. WebViews: Accessing
Personalized Web Content and Services. InProc. WWW10,
pages 576–586, 2001.

[22] P. Graunke, R. Findler, S. Krishnamurthi, and M. Felleisen.
Automatically Restructuring Programs for the Web. InProc.
ASE, November 2001.

[23] B. J. Grosz and C. L. Sidner. Attention, Intentions, and the
Structure of Discourse.Computational Linguistics, Vol.
12:pages 175–204, 1986.

[24] M. A. Hearst, A. Elliott, J. English, R. Sinha, K. Swearingen,
and K.-P. Yee. Finding the Flow in Web Site Search.CACM,
Vol. 45(9):pages 42–49, September 2002.

[25] S. Horwitz, T. Reps, and D. W. Binkley. Interprocedural
Slicing Using Dependency Graphs.ACM Transactions on
Programming Languages and Systems, Vol. 12(1):pages
26–60, January 1990.

[26] N. D. Jones. An Introduction to Partial Evaluation.ACM
Computing Surveys, Vol. 28(3):pages 480–503, September
1996.

[27] I.-Y. Ko, K.-T. Yao, and R. Neches. Dynamic Coordination
of Information Management Services for Processing
Dynamic Web Content. InProc. WWW11, pages 355–365,
2002.

[28] J. Lai. Conversation Interfaces.CACM, Vol. 43(9):pages
24–27, September 2000.

[29] G. Marchionini.Information Seeking in Electronic
Environments. Cambridge Series on Human-Computer
Interaction. Cambridge University Press, 1997.

[30] S. McGlashan, D. Burnett, P. Danielsen, J. Ferrans, A. Hunt,
G. Karam, D. Ladd, B. Lucas, B. Porter, K. Rehor, and
S. Tryphonas. Voice eXtensible Markup Language:
VoiceXML. Technical report, VoiceXML Forum, October
2001. Version 2.0.

[31] B. Mobashier, R. Cooley, and J. Srivastava. Automatic
Personalization Based on Web Usage Mining.CACM, Vol.
43(8):pages 142–151, August 2000.

[32] B. A. Myers and M. Beigl. Guest Editors’ Introduction:
Handheld Computing.IEEE Computer, Vol. 36(9):pages
27–29, September 2003.

[33] S. Perugini, M. E. Pinney, N. Ramakrishnan, M. A.
Pérez-Quĩnones, and M. B. Rosson. Taking the Initiative
with Extempore: Exploring Out-of-Turn Interactions with
Websites. Technical Report cs.HC/0312016, Computing
Research Repository (CoRR), December 2003.

[34] S. Perugini and N. Ramakrishnan. Personalizing Interactions
with Information Systems. InAdvances in Computers,
volume 57: Information Repositories, pages 323–382.
September 2003.

[35] S. Perugini and N. Ramakrishnan. Personalizing Web Sites
with Mixed-Initiative Interaction.IEEE IT Professional, Vol.
5(2):pages 9–15, March–April 2003.

[36] J. Pokorny. Static Pages are Dead: How a Modular Approach
is Changing Interaction Design.ACM Interactions, Vol.
8(5):pages 19–24, September–October 2001.

[37] D. Quan, D. Huynh, D. R. Karger, and R. Miller. User
Interface Continuations. InSixteenth ACM Symposium on
User Interface Software and Technology (UIST), November
2003.

[38] C. Queinnec. The Influence of Browsers on Evaluators or,
Continuations to Program Web Servers. InProc. ICFP,
pages 23–33, September 2000.

[39] S. Rollins and N. Sundaresan. AVoN Calling: AXL for
Voice-Enabled Web Navigation. InProc. WWW9, 2000.

[40] G. M. Sacco. Dynamic Taxonomies: A Model for Large
Information Bases.IEEE Transactions on Knowledge and
Data Engineering, Vol. 12(3):pages 468–479, May–June
2000.

[41] S. Srinivasan and E. Brown. Is Speech Recognition
Becoming Mainstream?IEEE Computer, Vol. 35(4):pages
38–41, April 2002.

[42] J. Steinberg and J. Pasquale. A Web Middleware
Architecture for Dynamic Customization of Content for
Wireless Clients. InProc. WWW11, pages 639–650, 2002.

[43] J. Veitch. A Conversation with Paul Graham.CACM, Vol.
41(5):pages 52–54, May 1998.

[44] K. Wang. A Study of Semantic Synchronous Understanding
on Speech Interface Design. InProc. UIST’03, November
2003.

[45] T. Winograd and F. Flores, editors.Understanding
Computers and Cognition – A New Foundation for Design.
Addison-Wesley, Reading, PA, 1987.

[46] S. A. Wolfman, T. Lau, P. Domingos, and D. S. Weld. Mixed
Initiative Interfaces for Learning Tasks: SMARTedit Talks
Back. InProc. IUI, pages 167–174, 2001.

[47] N. Yankelovich. How Do Users Know What To Say?ACM
Interactions, 3(6):pages 32–43, November–December 1996.

223

