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ABSTRACT
In the past few years, a number of constraint languages for
XML documents has been proposed. They are cumulatively
called schema languages or validation languages and they
comprise, among others, DTD, XML Schema, RELAX NG,
Schematron, DSD, xlinkit.

One major point of discrimination among schema lan-
guages is the support of co-constraints, or co-occurrence
constraints, e.g., requiring that attribute A is present if and
only if attribute B is (or is not) present in the same ele-
ment. Although there is no way in XML Schema to ex-
press these requirements, they are in fact frequently used in
many XML document types, usually only expressed in plain
human-readable text, and validated by means of special code
modules by the relevant applications.

In this paper we propose SchemaPath, a light extension
of XML Schema to handle conditional constraints on XML
documents. Two new constructs have been added to XML
Schema: conditions – based on XPath patterns – on type
assignments for elements and attributes; and a new simple
type, xsd:error, for the direct expression of negative con-
straints (e.g. it is prohibited for attribute A to be present if
attribute B is also present).

A proof-of-concept implementation is provided. A Web
interface is publicly accessible for experiments and assess-
ments of the real expressiveness of the proposed extension.

Categories and Subject Descriptors
I.7.2 [Document and Text Processing]: Document Prepa-
ration—markup languages; D.3.2 [Programming Languages]:
Language Classifications—extensible languages
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1. INTRODUCTION
Validating a document is, in XML parlance, the process

of verifying whether an XML document accords to a set of
structural and content rules expressed in one of the many
schema languages proposed by a number of different orga-
nizations and individuals.

The first and best-known schema language for XML is
surely DTD (Document Type Definition), which was intro-
duced and standardized within the XML recommendation
itself [6], and which is a direct derivation and simplification
of its counterpart in SGML, the immediate ancestor of XML
as a meta-markup language.

Although DTDs proved fairly useful in the publishing do-
main, where most rules deal with the explicit structure of
the document, rather than its content (e.g. requiring sec-
tions to have titles, or figures to have captions), new, unfore-
seen applications of XML clearly showed the limitations of
DTDs. For instance, data exchange applications may want
to make sure that the structures being exchanged are not
only correctly labeled (structural constraints), but also that
they contain correct data (for instance, a date is a date, an
integer is an integer, a zip code is a zip code).

The number of schema languages created to overcome the
limitations of DTDs is vast; in [2], a fairly authoritative
source, 15 different schema languages for XML are listed
besides DTDs, and at least one more, xlinkit [17], is miss-
ing. One of these languages, XML Schema [22, 5] is directly
backed by the World Wide Web Consortium, and is being
toted as the only and official schema language for XML
documents, the natural substitution for DTDs. ISO, on the
other hand, is active in DSDL [3], the international stan-
dardization of a couple of schema languages, RELAX NG
[9] and Schematron [12], that are having a fair success de-
spite being absolutely ignored by the W3C.

Roughly speaking, schema languages can be seen as be-
longing to one of two types:

• grammar-based languages, by which document engi-
neers create a whole context-free grammar according
to top-down production rules in a specified formalism.
XML Schema and RELAX NG, as well as DTDs them-
selves, fall into this category.

• rule-based languages, by which document engineers list
the rules that the XML document must satisfy, provid-
ing either an open specification (all that is not forbid-
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den is allowed) or a closed specification (all that is
not allowed is forbidden) [23]. Schematron and xlinkit
belong to this category.

It is futile to decide which of these is the best schema lan-
guage for XML documents. Each is tailored towards a dif-
ferent shade of validation requirements, and each provides
a rich set of features often unmatched by the others: for in-
stance, just limiting ourselves to the best-known candidates,
DTDs supports character entities, XML Schema has a rich
set of predefined data types and a sophisticated derivation
mechanism, RELAX NG sports a simple and straightfor-
ward syntax, Schematron provides a powerful XPath-based
rule mechanism.

At the XML 2001 conference, a panel of experts was sum-
moned to test drive and compare these four schema lan-
guages and determine their strength and weaknesses. A
final report was issued, in the form of a set of slides [23].
Strengths and weaknesses were collected in five major cate-
gories:

• Content models and datatypes: how sophisticated are
the rules for expressing constraints on structures (the
number and order of elements and attributes) and data
(allowed values and defaults).

• Modularity : how easily can complex schemas be orga-
nized in independent modules, and how flexible it is to
reuse these modules.

• Namespaces: what kind of namespace support is pro-
vided, and what kind of restrictions can be placed on
qualified XML elements and attributes.

• Linking : what kind of explicit relations can be ex-
pressed between elements and attributes of a same
document (e.g. the ID/IDREF relation in DTDs).

• Co-constraints: whether it is possible to express con-
straints on elements and attributes based on the pres-
ence or values of other attributes and elements, such
as the mutual exclusion (only one of two different at-
tributes can be present in an element).

At first glance, Schematron appears a clear winner: it sup-
ports most of the listed features, and practically alone dom-
inates the co-constraints category, for which neither XML
Schema nor DTDs offer any support at all, and RELAX NG
appears clearly limited. Yet, XML Schema provides the best
built-in datatypes and the most sophisticated mechanism for
user-defined types, whereas Schematron has a limited num-
ber of data types and no way to specify default values.

Nonetheless, the problem of co-constraints (also known as
co-occurrence constraints) is important and it is heavily felt
for in many user communities. Several domain-specific stan-
dard languages based on XML include lamentations (see, for
instance, [11]) that DTDs, XML Schema, etc., do not allow
co-constraints: thus they provide these rules in natural lan-
guage (with the obvious problems given by ambiguity and
interpretation) and they recommend implementers to sup-
port the relevant rules directly in their software.

An example comes from FpML (Financial Products Markup
Language), a markup language for financial derivatives trades.
An XML Schema schema for FpML 4.0 exists, but is not able
to capture many normative requirements (called validation
rules), which are expressed in natural language.

Even a number of well-known W3C languages dictate nor-
mative co-constraints, expressing them in the plain text of
the language description but not in the formal schema spec-
ifications. For instance, in XHTML the recursive presence
of <a> elements within other <a> elements is prohibited1,
as specified in Appendix B of [19], yet it is expressed nei-
ther in the DTD nor in the XML Schema. XML Schema
itself includes a number of co-constraints that cannot be ex-
pressed in the language, such as the mutual incompatibility
of the ref and name attributes in an element or attribute
definition.

Imposing constraints that cannot be expressed in the
schema language of choice really is a serious shortcoming
for interchange applications. The validation phase, in these
applications, has the overall goal to ensure with minimum
effort that the XML data does in fact conform to the pre-
specified rules. When not all rules can be expressed in the
schema language, either some constraints will not be veri-
fied, or code will have to be written to implement the verifi-
cation in the downstream application, forcing implementers
to provide their own validation code, with repetition of ef-
forts and no guarantee of correct and widespread implemen-
tations.

Yet, as mentioned, no single schema language provides all
the necessary features for a rich and complex XML docu-
ment type. Proposals have been made to mix two of them
and take the best from both: for instance, it has been pro-
posed [18, 1] to embed a rule-based specification in Schema-
tron within a grammar-based XML Schema document, so
that the cooperation of both validations yields the desired
control onto the XML documents. However, this solution is
complicated and not completely satisfying (see, for instance,
the discussion in Sect. 3.5).

In this paper we propose an alternative solution, called
SchemaPath. SchemaPath is a conservative extension of
XML Schema obtained adding conditional type attributions
to elements and attributes. Conditional attributions can
express co-constraints in a simple and compact syntax, and
provide much more than co-constraints, as will be explained
in the following. SchemaPath extends the XML Schema lan-
guage with just one new construct and one new built-in type,
so that understanding the differences and adopting the ex-
tensions is really trivial, especially comparing with the issues
arising with the adoption of a completely different schema
language such as Schematron. A proof-of-concept imple-
mentation of a validation engine for SchemaPath has been
developed to help understanding the advantages of our ap-
proach. It can be tested on-line or downloaded for local use
at http://genesispc.cs.unibo.it:3333/schemapath.asp.

The paper is structured as follows: in Sect. 2 we provide
a brief recapitulation of some of the schema languages men-
tioned in the paper, with some attention to the issue of co-
constraints. Sect. 3 describes the proposed syntax of Sche-
maPath, with some examples on using the new construct
and the new type, and a brief proof of the correctness of our
extension. Sect. 4 selects a few interesting co-constraints
listed in the textual documentation of well-known W3C lan-
guages such as XHTML, XSLT, XML Schema, but not for-
malized in the corresponding schema specifications, and shows
how they can somewhat elegantly be formalized in Schema-
Path. Finally Sect. 5 describes our implementation.

1This is technically considered an exclusion, rather than a
co-constraint, but there is only a very little difference.
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2. SCHEMA LANGUAGES FOR XML
In this section, we examine the most relevant schema

languages for XML documents, providing a few examples
and paying particular care to the issues connected to co-
constraints.

Besides DTDs [6] and XML Schema [22, 5], the best known
schema languages include RELAX [16], TREX [8], RELAX
NG [9], Schematron [12], DSD [13] and xlinkit [17].

As mentioned, these languages can be roughly divided
in two categories, basing on their approach to validation:
grammar-based languages and rule-based languages. As a
first approximation, Schematron and xlinkit are rule-based
languages, while the others are grammar-based.

2.1 DTDs
DTDs have been originally introduced for validating SGML

structures, and then ported to provide validation for XML
documents.

DTDs provide a sophisticated regular expression language
for imposing constraints on elements and subelements (the
so-called content model), but are very limited in the con-
trol of attributes and data elements. No data type exists
to speak of, with the exception of strings, whitespace-free
strings, and enumerations of strings. Furthermore, only at-
tributes allow enumerations and default values, while text
elements cannot even be checked for null values.

Since DTDs precede temporally the advent of namespaces,
they provide no support for qualified elements, although by
fixing the prefix associated to a namespace some support for
validation can be obtained.

SGML DTDs are richer and more complex than XML
DTDs, and in particular they have a feature that would be
of wide interest in our discussion: exclusions. Exclusions
specify that one or more elements cannot appear within an
element or any of its children, providing a deep exception to
the content model of an element. An example of exclusions
is shown in Sect. 4.1. In a way, exclusions represent one
kind of co-constraint, the only possible with DTDs (and
only SGML DTDs, by the way!)

2.2 XML Schema
XML Schema is a W3C recommendation [22, 5] aimed

at replacing DTDs as the official schema language for XML
documents. It is by far the most widely supported schema
language after DTDs, and provides a large number of im-
provements over them.

The first and most evident improvement is the switch to
an XML-based syntax, which worsens the language in terms
of readability and terseness, but highly improves it in terms
of flexibility and automatic processability. Moreover XML
Schema is completely namespace-aware.

Another major contribution of XML Schema is the Post
Schema Validation Infoset (PSVI), i.e., the additional infor-
mation that the validation adds to the nodes of the XML
document so that downstream applications can make use of
it for their own purposes. The most important advantage of
PSVI is certainly the type, or the set of legal values that a
node can have.

Types in XML Schema are either simple (strings with
various constraints) or complex (markup substructures of
the XML document including elements, attributes and text
nodes). A large number of built-in simple types are pro-
vided, ranging from integers to dates, times, URIs, etc.

Schema authors are encouraged to create new types by de-
riving existing ones, restricting their values via one of the
many facets provided (such as the length of the string, the
maximum or minimum values, etc.). Complex types are not
predefined, but can be created providing an expression on
the corresponding markup.

Types are either named, and referred to via their name, or
anonymous, and inserted inline within the relevant elements
and attributes. Elements are either global (defined directly
within the <schema> element) or local (i.e., defined within a
<complexType>). Local elements of different complex types
can have the same name and different types without limita-
tions.

The real strength of XML Schema lies in the rich collec-
tion of built-in simple types and the number of facets that
can be applied to them. XML Schema improves over DTDs
in complex types as well: it reintroduces unordered con-
tent models (although with some restrictions), and it allows
controlled repetitions of elements (with the minOccurs and
maxOccurs specifications).

XML Schema has no support at all for co-constraints or
DTD-like exclusions, which is exactly the kind of limitations
SchemaPath sets out to improve.

2.3 RELAX NG
RELAX NG [9] is a schema language for XML developed

by an international working group, ISO/IEC JTC1/SC34/WG1.
It is based on two preceding languages, TREX [8], designed
by James Clark, and RELAX [16], designed by Murata Mako-
to.

Patterns are the central concept of RELAX NG. They ex-
tend the concept of content model: while in DTDs a content
model is an expression over elements (and, very limitedly,
text), in RELAX NG a pattern is an expression over ele-
ments, text nodes and attributes.

External definitions of datatypes can be used for con-
straining the set of values of text nodes and attributes. The
most common datatype library is the one defined by XML
Schema in [5].

Differently from DTDs and XML Schema, RELAX NG
imposes no restriction to elements with unordered content
and allows ambiguous definitions, i.e., elements with the
same name and different content models, in the same con-
text.

The symmetric treatment of elements, attributes and text
nodes and the introduction of ambiguous definitions allow
RELAX NG to specify a number of co-constraints on XML
documents, such as mutual exclusion, inter-dependencies be-
tween elements and attributes, and others. To illustrate,
consider the following example,

<element name="x">
<choice>

<attribute name="a"/>
<attribute name="b"/>

</choice>
</element>

that imposes that “an <x> element must have either an a

attribute or a b attribute, but not both”.
However such co-constraints must be defined as patterns,

and there are co-constraints and context-dependent defini-
tions that may produce extremely long patterns. Further-
more, RELAX NG cannot be used to define all types of con-
straints definable in other schema languages such as xlinkit,
Schematron, and our own SchemaPath.
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Finally, another limitation of RELAX NG is its inability
to define default values for elements and attributes.

2.4 DSD
DSD [13] is a schema language co-developed by AT&T

Labs and BRICS. At the time of writing, there are two ver-
sion of DSD: DSD 1.0 and, recently, DSD 2.0 (DSD2)2.

Constraints are the central concept in DSD. A constraint
is used to specify the content of an element, its attributes
and its context (the sequence of nodes from the root to the
element). An element definition specifies a pair consisting
of an element name and a constraint.

The element content is constrained by a content expres-
sion, that is, a regular expression over element definitions.

Context patterns are used to impose constraints on the
context of an element. For instance, the context pattern

<Context>
<Element Name="x">

<Attribute Name="a" Value="v"/>
</Element>
<SomeElements/>
<Element name="y"/>

</Context>

is matched by all <y> elements within an <x> element, having
an a attribute, whose value is "v".

A particular constraint expression is the conditional con-
straint expression, an “if-then-else” construct whose boolean
expression is built with XML elements describing boolean
connectors. A few examples will be shown in Sect. 4.

A problem of DSD is that the boolean expressions are
able to test conditions just on ancestor elements and their
attributes, and not on sibling and descendant nodes too.
Moreover, they do not provide any comparison operator be-
tween values, and thus they appear limited in some cases.
Finally, being built on XML elements, boolean expressions
can easily become very verbose.

2.5 Schematron
Schematron [12] is a rule-based schema language created

by Rick Jelliffe at the Academia Sinica Computing Center
(ASCC). It has great expressive power, and is mainly used
to check co-constraints in XML instance documents.

A Schematron document defines a sequence of <rule>s,
logically grouped in <pattern> elements. Each rule has a
context attribute, which is an XPath pattern determining
which elements in the instance document the rule applies
to. Within a rule, a sequence of <report> and <assert>

elements is specified, having a test attribute, which is an
XPath expression evaluated to a boolean value for each node
in the context. The content of both <report> and <assert>

is an assertion, which is a declarative sentence in natural
language. When the test of a <report> succeeds, its content
is output. Contrarily, when the test of an <assert> fails, its
content is output. Thus, the <report> element is used to tag
negative assertions about the instance document, while the
<assert> element is used to tag positive ones. Therefore,
the output of the Schematron validation process is a list of
assertions.

A Schematron schema can be easily transformed into an
equivalent XSLT document. In particular, a <rule> ele-
ment can be transformed into a <template>, whose match

2Here we address DSD 1.0, because only a prototype Java
processor for DSD2 has been implemented. In the following,
we use the term DSD for DSD1.0.

attribute is set to the context of the rule. Both <assert> and
<report> elements can be mapped into conditional XSLT
elements (e.g., <choose> and <if>).

In fact, Schematron is commonly implemented as a meta-
stylesheet, called skeleton. This skeleton is applied to the
Schematron schema and the resulting XSLT is in turn ap-
plied to the XML instance document.

The strength of Schematron is in the facility of the co-
constraints definition. For instance, the sentence “if an <x>

element has an a attribute, then it must also have a y ele-
ment, otherwise it must be empty” can be formalized by the
following rule:

<rule context="x">
<report test="@a and not(y)">Error: no y element.</report>
<report test="not(@a) and *">Error: x must be empty.</report>

</rule>

However, the rule-based approach of Schematron does not
allow to easily express usual constraints on the content of
an element that are naturally captured by grammatical ex-
pressions. Furthermore, Schematron is not able to impose
complex restrictions on text values.

2.6 xlinkit
xlinkit [17] is more than a schema language: it is an appli-

cation service that provides rule-based link generation and
checks the consistency of distributed web content.

An xlinkit application defines a set of documents and a
set of consistency rules, and proceeds to verify the rules on
every file in the document set. The rule is expressed in the
constraint language CLIX, which is a first-order language
using predicates, quantifiers and variables. For instance, the
rule “all <x> elements must have an a attribute” is expressed
as follows:

<consistencyrule id="r1">
<forall var="x" in="//x">

<exists var="y" in="$x/@a">
</forall>

</consistencyrule>

The XPath expression specified in the in attribute of the
<forall> element is applied to the documents that belong to
the document set. Then, a union of the node sets returned
by the evaluation of the expression is computed. The sub-
formula <exists> is then evaluated for each node in the
union.

When consistency rules are checked, the produced output
is not a boolean value, but rather a set of XLink [10].

It is possible to express rather complex co-constraints in
xlinkit, such as the one stating that “all <x> elements must
have a n attribute whose value (treated as a number) defines
the exact number of its children”. Nevertheless, being rule-
based, xlinkit is more suited for expressing co-constraints
than for expressing the classical constraints of DTDs and
XML Schema.

3. SCHEMAPATH
In this section we illustrate the SchemaPath syntax, and

show a few fragments of specifications that demonstrate its
flexibility. SchemaPath is a conservative extension to XML
Schema. This means that any correct XML Schema is also
a correct SchemaPath. This also means that in order to
obtain a rich SchemaPath specification, one can start writing
a normal XML Schema specification, and then just add those
conditions that cannot be expressed in XML Schema.
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SchemaPath adds one new construct, the <xsd:alt> el-
ement, for expressing alternative type attributions for ele-
ments and attributes, and one new built-in datatype,
xsd:error, for the direct expression of negative rules, i.e.,
rules that need to be not satisfied for validity.

3.1 The<xsd:alt> element
Within an element or attribute definition, it is possible

to subject the type attribution to alternative conditions ex-
pressed with a number of <xsd:alt> elements containing an
XPath pattern, an optional explicit priority of choice (much
like in XSLT templates), and the type to be applied to the
element or attribute if the condition holds.

The simplest example is subjecting the type of an ele-
ment to the value of another element. For instance: “the
<quantity> of an <invoiceLine> is of type integer if the
value of <unit> is items, and of type decimal if the value of
<unit> is meters ”.

In this case, we create a conditional type attribution for
the element <quantity>, with two alternative types,
xsd:integer and xsd:decimal according to the relative con-
dition expressed as XPath templates.
<xsd:element name="invoiceLine">

<xsd:complexType>
<xsd:sequence>

<xsd:element name="unit" type="unitType"/>
<xsd:element name="quantity">

<xsd:alt cond="../unit=’items’" type="xsd:integer"/>
<xsd:alt cond="../unit=’meters’" type="xsd:decimal"/>

</xsd:element>
</xsd:sequence>

</xsd:complexType>
</xsd:element>

The SchemaPath engine makes no assumption about the
validity of the XPath pattern: any pattern can be expressed,
even an impossible one according to the data type of the
element; if this is the case, the pattern will simply be never
satisfied by the document, and the alternative never chosen.
For instance, there is no control in the previous example
that a <unit> element is actually defined as a sibling of the
<quantity> element: if this is the case, then the pattern
may be satisfied, otherwise it will be always ignored. On
the other hand, failure to satisfy at least one alternative
condition will yield a validation error.

3.2 Priorities
It is of course possible for an element or an attribute to

match more than one condition at the same time. For in-
stance, in the following declaration,
<xsd:element name="quantity">

<xsd:alt cond="../unit=’items’" type="xsd:integer"/>
<xsd:alt cond="../unit" type="xsd:decimal"/>

</xsd:element>

the first condition checks that the <unit> element contains
the string "items", while the second just verifies that a
<unit> element is present; of course, a situation satisfying
the first condition also satisfies the second one.

In these situations, alternatives should be given different
priorities through the optional priority attribute, which is
a positive or negative real number. If not explicitly specified,
priority defaults to 0.5. Thus, the example above could
be rewritten as follows:

<xsd:element name="quantity">
<xsd:alt cond="../unit=’items’" type="xsd:integer"/>
<xsd:alt cond="../unit" type="xsd:decimal"

priority="0"/>
</xsd:element>

assuring that the second alternative is chosen only when the
first one does not hold.

It is an error if during the validation process an element
or attribute simultaneously matches two or more conditions
with the same priority. In such a case, a SchemaPath pro-
cessor may signal the error, otherwise it must recover by
choosing the alternative occuring last in lexical order.

3.3 Thexsd:error simple type
The xsd:error built-in simple type is an unsatisfiable

type, i.e., its value space [5] is empty. Thus, assigning an
xsd:error to an element (or, more likely, to an alternative
condition in an element definition) will yield a validation
error.

The xsd:error can be used to directly express a negative
condition, i.e., a condition that we do not want to hold in our
XML documents. It is used for roughly the same purposes
as the <report> statement in Schematron.

The simplest example of use of the xsd:error is mutual
exclusion, e.g. to prevent the presence of an attribute in an
element when another attribute is already present. For in-
stance: “the <description> element of the <invoiceLine>

can have either a print attribute, with the internal code for
the type of print, or a color attribute, with the Pantone code
of the color of the dye. It is incorrect for the element to have
both attributes”.

In this case, we provide a direct type to one of the two
attributes, and a conditional attribution to the other, se-
lecting the xsd:error type if the first attribute is already
present.

<xsd:element name="description">
<xsd:complexType>

<xsd:attribute name="print" type="PrintCodeType"/>
<xsd:attribute name="color">

<xsd:alt priority="0" type="PantoneCodeType"/>
<xsd:alt cond="../@print" type="xsd:error" />

</xsd:attribute>
</xsd:complexType>

</xsd:element>

The first <xsd:alt> has no condition expressed. This is
a shorthand for expressing an always true condition, and
allows for the specification of a default type assignment (i.e.,
for all those situations where no explicit condition holds).
An alternative that uses the default condition should always
have a priority lower than those of all the other alternatives,
as shown in the example. Therefore, the color attribute
will be of type xsd:error if the condition holds, and of type
PantoneCodeType in all other cases.

3.4 Namespaces and qualified conditions
SchemaPath defines the namespace

http://www.cs.unibo.it/SchemaPath/1.0, but it also ac-
cepts schemas belonging to the plain XML Schema name-
space. Either one can be used, provided it is used consis-
tently.

SchemaPath supports namespaces and qualified elements
and attributes in much the same way as XML Schema does.
Yet, SchemaPath makes one restricted assumption on pat-
terns on fully qualified elements, borrowed from XSLT. A
well-known constraint of XSLT (which on the other hand is
being stigmatized and scheduled for removal in the next ver-
sion, as specified in [15]) is that patterns on fully qualified el-
ements need to have a non-null prefix to work. SchemaPath
makes the same constraint and plans to remain aligned on
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this issue to XSLT, removing it only when the corresponding
constraint will be removed from XSLT.

This means that it is not possible to use a default name-
space (i.e., without a prefix) as the target namespace in
SchemaPath, because the XPath patterns would not work
correctly.

3.5 PSVI
A peculiar feature of XML Schema is the PSVI. This is

the information associated to the memory representation of
all the nodes of an XML document after having been parsed
and validated. This information can then be used by a down-
stream application for performing specific computations on
nodes and node values.

SchemaPath does not modify the content of the PSVI for
valid documents. In fact, the <xsd:alt> structure added by
SchemaPath does not survive the validation phase, since it
is only used to determine the actual type to be associated
to the element. In a way, it is equivalent to a specific type
attribution via an xsi:type attribute in the XML document
itself.

The only difference in PSVI is for invalid documents: since
SchemaPath adds another built-in type, namely xsd:error,
an invalid element may have been assigned the xsd:error

type and (obviously) have failed the validation.
The precision of the PSVI generation is an important dif-

ference between SchemaPath and the proposal [18, 1] of em-
bedding Schematron-like rules within a XML Schema spec-
ification. Indeed, the PSVI obtained validating a document
against a SchemaPath schema is strict, since it describes the
precise type assigned to each element after the evaluation of
the guards of the conditional type assignments. On the con-
trary, in the alternative approach, to express a co-constraint
we are often forced to declare lax XML Schema types, that
also accept wrong values. The Schematron validator is re-
sponsible of rejecting invalid values, but that does not affect
the generated PSVI. Thus the lax types reach the PSVI,
that becomes less informative. Therefore, in general, the
PSVI obtained with SchemaPath is more precise that with
XML Schema and Schematron together, which represents a
major advantage of our proposal.

3.6 A Formalization of SchemaPath
Since we are proposing an extension of XML Schema, we

need to grant that all the interesting properties of XML
Schema still hold for SchemaPath. Thus we have formally
described the SchemaPath semantics, adapting the formal-
ization of XML Schema presented in [20]. Due to lack of
space, the formalization will not be presented in this paper.
The interested reader can find it in [14].

The formalization allows us to prove several important
results. The first one is that the validation theorem holds
for SchemaPath, too.

The validation theorem for XML Schema proves that an
untyped XML document validates against a given schema
yielding a typed tree if and only if the typed tree matches the
type given in the schema and yields the original document
when types are removed.

Intuitively, the validation theorem asserts that the PSVI
built during the validation phase is a faithful representation
of both the original XML document (when the types are
not considered) and the type derivation that proves that
the document is well-typed according to the schema. The

above mentioned property of PSVI holds when the schema
is expressed in SchemaPath, too.

The second important result is that the roundtripping and
reverse-roundtripping properties holds for SchemaPath un-
der the same set of conditions required for XML Schema.

The roundtripping property states that serializing into
XML a PSVI and deserializing it again yields the original
PSVI. In other words, using the XML format to communi-
cate the Post Schema Validation Infoset to another applica-
tion is not a lossy operation.

Reverse-roundtripping is the property that assures that
validating an XML document and then serializing the ob-
tained Post Schema Validation Infoset yields exactly the
original XML document. In other words, the deserializa-
tion and serialization cycle is idempotent: a document can
be parsed and saved back as many times as we want without
loosing or changing the information it conveys.

The two properties are a direct consequence of the valida-
tion theorem, that grants a perfect correspondence between
the PSVI and the pair formed by the original XML docu-
ment and its schema, and they hold for SchemaPath schemas
just as they do for XML Schema3.

To summarize, the SchemaPath conservative extension of
XML Schema satisfies all the good theoretical properties
identified so far for XML Schema. In particular, we proved
the validation theorem for SchemaPath, that implies a fun-
damental practical property of a schema language: for a
large class of documents, the PSVI does not change when a
document is serialized (saved) and deserialized (loaded).

4. CO-CONSTRAINTS IN SCHEMAPATH
In this section we provide a comparison between Sche-

maPath and other schema languages already described in
previous sections. The comparison is by examples on co-
constraints. We have chosen a number of “famous” exam-
ples, taken by important W3C specifications.

4.1 No nesting of<a> elements in XHTML
In Appendix B of the XHTML recommendation [19], some

element prohibitions are listed. These prohibitions are speci-
fied in natural language, since neither DTD nor XML Schema
can be used to specify them.

The first (and most widely known) element prohibition is
the exclusion of elements <a> within an element <a>. This
means that hypertext anchors cannot nest regardless of their
level.

Existing schemas for XHTML only provide a subformu-
lation of the exclusion: they cannot prevent the nesting of
<a> elements within <a> elements at all levels, but just at
the first level.

Actually it is technically possible to enforce the rule in
XML Schema, but this would involve duplicating a large
part of the specification, creating two subschemata (one with
and one without <a> as an allowable element) to be used out-
side and within the outermost <a> element [21]. Of course

3Unfortunately, due to a bad design choice of XML Schema,
the two properties hold only for schemas satisfying certain
conditions. SchemaPath, being a conservative extension of
XML Schema, suffers from the same limitation, without aug-
menting its severity: we designed SchemaPath so that no
new conditions restricting the set of instances that satisfy
the roundtripping and reverse roundtripping properties are
introduced.
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Table 1: Example: No nesting of <a> elements in XHTML
Schematron
<rule context="x:a">

<report
test=".//x:a"

>a must not contain other
a elements</report>

</rule>

DSD
<ElementDef ID="a">
<Not>
<Context>
<Element Name="a"/>
<SomeElements/>
<Element Name="a"/>

</Context>
</Not>
<Content IDRef="Inline"/>

</ElementDef>

xlinkit
<consistencyrule>

<forall var="x" in="//x:a">
<not>

<exists var="y" in="$x//x:a"/>
</not>

</forall>
</consistencyrule>

SGML DTD
<!ENTITY % inline

"(#PCDATA | a | b | ... )">
<!ELEMENT a - - (%inline;) -(a) >

SchemaPath
<xsd:element name="a">
<xsd:alt cond=".//x:a" type="xsd:error"/>
<xsd:alt priority="0" type="x:a.type"/>

</xsd:element>

Table 2: Example: Named templates in XSLT
xlinkit
<consistencyrule id="r">
<forall var="x" in="//xsl:template">
<implies>
<not>
<exists var="y" in="$x/@name"/>

</not>
<exists var="z" in="$x/@match"/>

</implies>
</forall>

</consistencyrule>

Schematron
<rule context="xsl:template">
<report test="not(@name) and not(@match)"
>Error</report>

</rule>

RELAX NG
<element name="template">
<choice>
<group>
<attribute name="name">
<data type="NCName"/>

</attribute>
<attribute name="match">
<ref name="Pattern"/>

</attribute>
</group>
<attribute name="name">
<data type="NCName"/>

</attribute>
<attribute name="match">
<ref name="Pattern"/>

</attribute>
</choice>
<ref name="templateContent"/>

</element>

DSD
<ElementDef ID="template">
<AttributeDecl Name="match" Optional="yes">
<StringType IDRef="Pattern"/>

</AttributeDecl>
<AttributeDecl Name="name" Optional="yes">
<StringType IDRef="NCName"/>

</AttributeDecl>
<If><Not><Attribute Name="name"/></Not>
<Then><Attribute Name="match"/></Then>

</If>
<Content IDRef="templateContent"/>

</ElementDef>

SchemaPath
<xsd:element name="template">
<xsd:alt cond="not(@match) and not(@name)" type="xsd:error" />
<xsd:alt priority="0" type="xsl:templateType"/>

</xsd:element>
<xsd:complexType name="templateType">
<xsd:sequence>
<xsd:group ref="xsl:templateContent"/>

</xsd:sequence>
<xsd:attribute name="match" type="xsl:patternType"/>
<xsd:attribute name="name" type="xsd:NCName"/>

</xsd:complexType>

this rapidly leads to unmanageable specifications, given their
size and complexity. RELAX NG has the same problem, and
must use a similar solution with similar limitations.

SGML DTDs had the exact construct needed, exclusions,
but it was later removed from XML DTDs. On the other
hand, SchemaPath, xlinkit, Schematron and DSD all allow
reasonable definitions of the constraint by means of consis-
tency rules on the nesting of elements. Possible solutions
using these languages are proposed in Table 1.

4.2 Named templates in XSLT
An <xsl:template> element may contain both a match

and a name attribute. The XSLT recommendation [7] de-
scribes the relation between match and name attributes as
follows:

[Section 5.3] The match attribute is required
unless the xsl:template element has a name at-
tribute.

[Section 6] If an xsl:template element has a
name attribute, it may, but need not, also have a
match attribute.

The above sentences can be restated as “the absence of the
name attribute implies the presence of the match attribute”.

xlinkit and DSD directly formalize this new restatement
of the constraint. Schematron and SchemaPath can be used
to report an error when both name and match are missing
(which is logically equivalent to the restatement). RELAX
NG has no conditional statements, so a verbose grammatical
expression is required. Finally, DTDs and XML Schema
provide no way to define this constraint.

Table 2 compares the different solutions.

4.3 Elements in XML Schema
There are some syntactic requirements imposed on a XML

Schema document that cannot be described by XML Schema
itself. For instance, section 3.3.2 of [22] states that:
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Table 3: Example: XML Schema specification
DSD
<ContentDef ID="elementContent">
<Optional>
<Union>
<Element IDRef="simpleType"/>
<Element IDRef="complexType"/>

</Union>
</Optional>

</ContentDef>
<ElementDef ID="globalElement"
Name="element">
<AttributeDecl Name="name">
<StringType IDRef="NCName"/>

</AttributeDecl>
<AttributeDecl Name="type"
Optional="yes">
<StringType IDRef="QName"/>

</AttributeDecl>
<If><Attribute Name="type"/>
<Then><Empty/></Then></If>

<Content IDRef="elementContent"/>
</ElementDef>
<ElementDef ID="localElement"
Name="element">
<AttributeDecl Name="name"
Optional="yes">
<StringType IDRef="NCName"/>

</AttributeDecl>
<AttributeDecl Name="type"
Optional="yes">
<StringType IDRef="QName"/>

</AttributeDecl>
<AttributeDecl Name="ref"
Optional="yes">
<StringType IDRef="QName"/>

</AttributeDecl>
<If><Attribute Name="ref"/>
<Then>
<Empty/>
<Not>
<Or>
<Attribute Name="type"/>
<Attribute Name="name"/>

</Or>
</Not>

</Then>
<Else>
<If><Attribute Name="type"/>
<Then><Empty/></Then></If>

</Else></If>
<Content IDRef="elementContent"/>

</ElementDef>

xlinkit
<consistencyrule id="local-ref">
<forall var="x"
in="//xsd:element[@ref]">
<and>
<not>
<exists var="y"
in="$x/parent::xsd:schema"/>

</not>
<and>
<not>
<exists var="y"
in="$x/@name or $x/@type"/>

</not>
<not>
<exists var="y"
in="$x/xsd:simpleType | $x/xsd:complexType"/>

</not>
</and>

</and>
</forall>

</consistencyrule>
<consistencyrule id="no-ref">
<forall var="x"
in="//xsd:element[not(@ref)]">
<and>
<exists var="y" in="$x/@name"/>
<not>
<and>
<exists var="y" in="$x/@type"/>
<exists var="y"
in="$x/xsd:complexType | $x/xsd:simpleType"/>

</and>
</not>

</and>
</forall>

</consistencyrule>

RELAX NG
<define name="globalElement">
<element name="element">
<attribute name="name">
<data type="NCName"/>

</attribute>
<ref name="namedOrAnon"/>

</element>
</define>
<define name="localElement">
<element name="element">
<choice>
<attribute name="ref">
<data type="QName"/>

</attribute>
<group>
<attribute name="name">
<data type="NCName"/>

</attribute>
<ref name="namedOrAnon"/>

</group>
</choice>

</element>
</define>
<define name="namedOrAnon">
<choice>
<attribute name="type">
<data type="QName"/>

</attribute>
<optional>
<choice>
<ref name="complexType"/>
<ref name="simpleType"/>

</choice>
</optional>

</choice>
</define>

Schematron
<pattern name="elementDecl">
<rule context="xsd:element[@ref]">
<assert test="not(parent::xsd:schema)"
>@ref is not allowed.</assert>
<assert test="not(@type) and not(@name)"
>@type and @ref are not allowed.</assert>
<assert test="not(xsd:simpleType) and

not(xsd:complexType)"
>anonymous type is not allowed.</assert>

</rule>
<rule context="xsd:element[not(@ref)]">
<assert test="@name"
>@name is required</assert>
<report test="@type and

(xsd:complexType or xsd:simpleType)"
>error: @type and an anonymous type.</report>

</rule>
</pattern>

SchemaPath
<xsd:complexType name="element">
<xsd:sequence>
<xsd:choice minOccurs="0">
<xsd:element name="simpleType" type="xsd:localSimpleType"/>
<xsd:element name="complexType" type="xsd:localComplexType"/>

</xsd:choice>
</xsd:sequence>
<xsd:attribute name="name" type="xsd:NCName"/>
<xsd:attribute name="ref" type="xsd:QName"/>
<xsd:attribute name="type" type="xsd:QName"/>

</xsd:complexType>
<xsd:element name="element">
<xsd:alt cond="@type and (xsd:simpleType or xsd:complexType)"

type="xsd:error" priority="2.5"/>
<xsd:alt cond="parent::xsd:schema and not(@name)"

type="xsd:error" priority="2"/>
<xsd:alt cond="parent::xsd:schema and @ref"

type="xsd:error" priority="1.5"/>
<xsd:alt cond="not(parent::xsd:schema) and

((@ref and @name) or (not(@ref) and not(@name)))"
type="xsd:error" priority="1"/>

<xsd:alt cond="not(parent::xsd:schema) and @ref and
(@type or xsd:complexType or xsd:simpleType)"

type="xsd:error"/>
<xsd:alt type="xsd:element" priority="0"/>

</xsd:element>
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<element>s within <schema> produce global
element declarations; <element>s within <group>

or <complexType> produce either particles which
contain global element declarations (if there’s a
ref attribute) or local declarations (otherwise).
For complete declarations, top-level or local, the
type attribute is used when the declaration can
use a built-in or pre-declared type definition. Oth-
erwise an anonymous <simpleType> or <complexType>
is provided inline.

The statement can be rephrased as follows: “an <element>

must contain a name attribute, and may contain either one of
<complexType> or <simpleType>, or a type attribute point-
ing to either a built-in or a pre-declared type definition. A
local <element> might also have a ref attribute, in which
case it has no name attribute, no type attribute and no
<complexType> or <simpleType> content”.

Again, XML Schema and DTDs cannot be used to spec-
ify such constraints. Both xlinkit and Schematron declare
two rules: one for <element>s with a ref attribute, and one
for <element>s without it. However, the XML-based syntax
of xlinkit formulae, and the requirements that their boolean
operators must be applied to no more than two subformulae,
make the xlinkit solution more verbose than with Schema-
tron. RELAX NG defines two patterns and DSD defines two
element definitions: one for global elements and the other
for local elements. While DSD uses boolean expressions to
enforce co-constraints, RELAX NG must resort to purely
grammatical expressions, providing a rather involved solu-
tion. Finally, in SchemaPath the solution is to write a single
type definition for both global and local declarations, where
name, type, and ref attributes are optional, and optional
also is the anonymous type definition. Then, a condition
assigns xsd:error to the element whenever a co-constraint
is violated, and the correct type otherwise. Our solution is
based on the types specified in the official XML Schema for
XML Schemas [22].

These solutions are shown in Table 3.

5. IMPLEMENTATION
SchemaPath draws important design decisions from XSLT:

for instance, SchemaPath conditions use the same XPath ex-
pressions that XSLT accepts as predicates in template pat-
terns, and alternatives of conditional declarations are as-
signed a priority, just as it is for XSLT templates.

These decisions were not taken by chance: these designs
are well known, well understood and highly reasonable, and
they greatly simplified the task of choosing the right syntax
for our language. But there is one more reason for these
decisions, connected to the ease of implementation of a Sche-
maPath validator.

Implementing from scratch a full-featured SchemaPath
validator is a task well beyond the possibilities of our small
academic team. This is due not so much on the syntax
particularities introduced specifically by SchemaPath, but
rather on the complexity of the XML Schema itself, which
SchemaPath extends: XML Schema validators are several
hundred of thousands lines of code, their implementation in-
volves subtle figuring out of the actual meaning of the W3C
standard, and they have been already implemented several
times.

Hacking an existing XML Schema validator is also a non
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Figure 1: Implementation.

trivial task; although a smaller job than a full implemen-
tation, it still requires a deep knowledge of the internals
of the existing engine, so that the changes for introducing
the support for SchemaPath extensions harmonize with the
rest of the code. Furthermore, this would inevitably involve
freezing the code supporting XML Schema, and not taking
advantage of the new versions of the hacked validator.

Rather, we found out (and, in minimal part, actually de-
signed SchemaPath so that this would hold) that the lan-
guage allows an easy implementation of its validator as a
pre-processor to a plain and standard XML Schema valida-
tor.

Just like a Schematron specification really is an XSLT
transformation in disguise, our SchemaPath preprocessor is
actually based on a couple of XSLT stylesheets, that create a
derived XML Schema and a derived XML document that are
the ones being used for the actual XML Schema validation.

More precisely, given an XML document X, and a
SchemaPath S, we apply two XSLT stylesheets, T ′ and T ′′,
respectively to S (obtaining a new schema S′) and to X
(obtaining a new XML document X ′); T ′ and T ′′ have the
property that S validates X in SchemaPath if and only if S′

validates X ′ in XML Schema.
Whereas the stylesheet T ′ can be applied uniformly to

any SchemaPath schema, we need a different stylesheet T ′′

for each document X. Therefore, T ′′ is generated on the fly
by means of the application of a meta-stylesheet MT to S.
Thus the actual architecture of our pre-processor is the one
shown in Fig. 1.

Although this implementation can be hardly considered
efficient, it works and can be used to test the expressiveness
of the SchemaPath language. Furthermore, the implemen-
tation is independent of the actual XML Schema validator,
and thus can be used in any software architecture that sup-
ports both XSLT and XML Schema. The overall procedural
part is a couple of dozens line long4, and can be ported to
any programming language in just a few minutes.

Our implementation can be tested on-line at the URL
http://genesispc.cs.unibo.it:3333/schemapath.asp,
and can be downloaded for local tests from the same address.
The downloadable package consists of a zip file containing
an ASP script, the T ′ and MT stylesheets, and an XML
document and a SchemaPath specification that can be used
for testing.

In the next section we give further details on our im-
plementation, explaining the operations performed by the

4Excluding the back conversion of the validation errors.
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stylesheet T ′ and the meta-stylesheet MT . Our implemen-
tation has some well-known limits: they are explained in
Sect. 5.2.

5.1 Transforming the source and the schema
The most important step in the conversion implemented

by our SchemaPath processor is the insertion of each con-
ditional element within a new wrapper element manifesting
the condition that holds with the highest priority. The name
of the wrapper element is obtained combining the name of
the element being wrapped, the condition with the high-
est priority among the conditions the element satisfies, and
such highest priority. The wrapper element is in turn in-
serted within a meta-wrapper, whose name depends only on
the conditional element name.

Such a conversion is performed by T ′′, which is basically
an identity stylesheet — that is, a transformation that ver-
batim copies its input to the output—, but it adds the neces-
sary templates to insert the appropriate wrappers and meta-
wrappers around the conditional elements. In particular,
there is a template for each alternative of each conditional
declaration. The template matches the elements that sat-
isfy the condition specified in the corresponding alternative.
The priority of each alternative is copied within the corre-
sponding template.

The transformation T ′ on the SchemaPath documents is
also an identity stylesheet except for a few rules that create
the declaration of the meta-wrapper and wrapper elements.
Indeed, each conditional element declaration is mapped into
a meta-wrapper declaration, whose type is anonymously de-
fined and consists of a choice among wrapper elements (one
for each alternative). The type of each wrapper is defined
to be a sequence of just one element, whose name is that of
the conditional element, and whose type is the one specified
in the corresponding alternative.

Since each template in T ′′ matches a conditional element
according to the XSLT priority order, we are sure that the
wrapper being inserted is the one corresponding to the ac-
tual satisfied condition. Since each wrapper limits the type
of the contained element to the one being specified in the
corresponding alternative condition, we are sure that only
correct pairs of wrappers and element types will be accepted
by the XML Schema processor. Thus the XML Schema en-
gine will validate all and only those converted documents
that are valid according to the SchemaPath specification.
The meta-wrapper is added to handle complex situations
arising within <all> constructs.

5.2 Implementation limits
Our current implementation has a number of limitations,

which are not intrinsic to SchemaPath, but which are con-
sequences of our approach based on XSLT.

The first and most trivial of the limitations concerns the
management of namespaces in SchemaPaths whose target
namespace is that of SchemaPath itself. Indeed, given the
SchemaPath snippet

<xsd:element name="alt" type="xsd:alt.type"/>

and assuming that the xsd prefix is associated with the
SchemaPath namespace, T ′ maps it into an identical ele-
ment, but declares the xsd as being associated with the XML
Schema namespace. As a consequence, the type attribute
references a type definition not present in S′ (the target
namespace defined in S′ remains that of SchemaPath).

However, such a limitation is not severe as the author can
always rewrite the schema using two different prefixes for
the SchemaPath namespace.

A more severe limitation regards the interactions between
local conditional elements with the same name. In the-
ory, homonymous local elements have independent lives, and
their conditions should be independent of each others. Un-
fortunately, our implementation applies global XSLT tem-
plates, regardless of the complex types in which the local
elements are being defined. As a consequence, conflicting
template rules could be generated in T ′′.

For instance, let us assume that we have two local ele-
ments with the same name and different conditions:

<xsd:complexType name="aType">
<xsd:sequence>
<xsd:element name="quantity">
<xsd:alt cond="../unit=’items’" type="xsd:integer"/>
<xsd:alt cond="../unit=’meters’" type="xsd:decimal"/>

</xsd:element>
</xsd:sequence>

</xsd:complexType>
<xsd:complexType name="anotherType">
<xsd:sequence>
<xsd:element name="quantity">
<xsd:alt cond="../unit" type="xsd:string"/>

</xsd:element>
</xsd:sequence>

</xsd:complexType>

The condition of the second <quantity> is more general
than the conditions of the first <quantity>, i.e., each el-
ement satisfying one of the alternatives of the first decla-
ration also satisfies that of the second declaration. Since
the wrapping templates are global (i.e., they are the same
for all the <quantity> elements), and since the templates
connected to all the conditions in both the first and the
second <quantity> elements have the same priority, such
templates are conflicting, and thus the underlying XSLT
processor could signal the error.

Our implementation is able to automatically detect those
schemas that could be handled incorrectly due to this lim-
itation, and it notifies the user with a warning message.
However, a workaround exists for this limitation, even if it
cannot be just as easily implemented, and it does not apply
to every situations.

In fact, wherever conditions on other local elements with
the same name conflict with the local conditions, new con-
ditions matching the other ones can be inserted locally, re-
peating the correct type. These new conditions must be
identical character by character to the old ones, and not
just semantically equivalent XPaths. Moreover, they must
have the same priority.

For instance, to have our implementation process correctly
the previous example, the definition of the complex type
anotherType needs to change to:

<xsd:complexType name="anotherType">
<xsd:sequence>
<xsd:element name="quantity">
<xsd:alt cond="../unit" type="xsd:string"

priority="0"/>
<xsd:alt cond="../unit=’items’" type="xsd:string"/>
<xsd:alt cond="../unit=’meters’" type="xsd:string"/>

</xsd:element>
</xsd:sequence>

</xsd:complexType>

With this trick, all the conditions that are local to
anotherType match those of aType, and the correct wrap-
pers are inserted.
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6. CONCLUSIONS AND FUTURE WORK
Extending XML Schema has several advantages over in-

venting a new language, or extending Schematron, or ex-
tending any of the other schema languages. First of all, we
can exploit the abundant feature set of XML Schema, espe-
cially the built-in data types, without needing to reinvent
the wheel; secondly, XML Schema is undoubtedly the best-
known schema language for XML documents and the lan-
guage for which the largest number of tools and experience
exist, possibly only second to DTDs5. Thirdly, since nodes
are assigned precise types determined by successful condi-
tions, the SchemaPath validation produces strict PSVIs, a
feature not achievable simply embedding Schematron-like
assertions within a XML Schema specification. Finally, the
implemented validation engine, designed as a pre-processor
to an XML Schema validator, shows that implementing a
SchemaPath processor is really easy and straightforward. A
formal proof of correctness of our implementation (up to the
well-known limitations described in Sect 5.2) can be found
in in [14].

A challenging future work consists of extending
SchemaPath to make conditional attributions survive the
validation phase and enter the PSVI, without breaking the
good properties inherited from XML Schema (for instance,
decidability of sub-typing).

The extension would be particularly interesting, since it
would pave the way to experimenting the usage of Sche-
maPath to type XSLT expressions, directly leading to a
dependently-typed typing discipline6. A dependent type al-
lows a fine control over the content model returned by a
function, whereas only a less precise disjunctive type can
be assigned when XML Schema types are the only types
available.
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