
XVM: A Bridge between XML Data and Its Behavior
Quanzhong Li*

Dept. of Computer Science
University of Arizona
Tucson, AZ 85721

lqz@cs.arizona.edu

Michelle Y Kim
IBM T.J. Watson
Research Center

mykim@us.ibm.com

Edward So
IBM T.J. Watson
Research Center

edwardso@us.ibm.com

Steve Wood
IBM T.J. Watson
Research Center

woodsp@us.ibm.com

ABSTRACT
XML has become one of the core technologies for contemporary
business applications, especially web-based applications. To
facilitate processing of diverse XML data, we propose an
extensible, integrated XML processing architecture, the XML
Virtual Machine (XVM), which connects XML data with their
behaviors. At the same time, the XVM is also a framework for
developing and deploying XML-based applications. Using
component-based techniques, the XVM supports arbitrary
granularity and provides a high degree of modularity and
reusability. XVM components are dynamically loaded and
composed during XML data processing. Using the XVM, both
client-side and server-side XML applications can be developed
and deployed in an integrated way. We also present an XML
application container built on top of the XVM along with several
sample applications to demonstrate the applicability of the XVM
framework.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs and
Features – frameworks. H.5.2 [Information Interfaces and
Presentation]: User Interfaces - Graphical User Interface,
prototyping. I.7.m [Document and Text Processing]:
Miscellaneous.

General Terms
Documentation, Design, Languages.

Keywords
Components, Web applications, XML, XML applications, XML
processing, XVM

1. INTRODUCTION
The World Wide Web has been evolving from serving simple
document requests to additionally supporting complex enterprise-
level business applications. Today, web-based applications play a
critical role in electronic commerce and in corporate information
systems. At the same time, the Extensible Markup Language
(XML) [3] is accepted as the standard for data representation and
exchange, and it has been widely used in web-based applications.

This creates a great demand for facilities that can incorporate
XML support into development and deployment of web-based
applications.

Much research work targeting web-based applications has
been proposed in the literature. In the software engineering area,
software development principles and guidelines [1][5][8][9] have
been suggested. Despite the efforts that have been focused on the
web, the difficulties and inefficiencies in development and
maintenance of web-based applications are still prominent.

To give the client side the ability to process XML documents
several XML based browsers are available [12][13][14][15].
However, they are not designed to support the processing of
general XML data, nor do they have a flexible open architecture
for incorporation into XML applications. As a result, many web
applications are not built with a conceptually clean integrating
model. Although many XML application development tools have
been developed [16][18], they provide only the basic abilities for
XML data processing, such as data loading, parsing, etc. There is
a lack of a general model to facilitate applications that wish to
implement business logic related with the XML data.

In this paper, we propose an extensible, integrated XML
processing architecture, the XML Virtual Machine (XVM). The
XVM is a component-based XML-centric architecture with
dynamic binding, high modularity and reusability. It provides a
framework for XML applications to implement application logic
in a component-based approach. Components are naturally and
dynamically composed according to the processed XML data.
Application designers and developers have the freedom to choose
the granularity of components. The XVM facilitates the
development and deployment for both client-side and server-side
XML applications. The contributions of this paper are:

 An integrated XML document processing framework is
proposed.

 The XVM provides high-degree of extensibility and
reusability by using component-based techniques.

 The component to XML element association connects static
XML data with its behaviors.

 Deployment of XML applications is made easy through
registry service and dynamic binding mechanisms.

The rest of the paper is organized as follows. Section 2
presents the motivations of this paper. The XVM framework is
introduced in Section 3. Following this in Section 4, we describe
the XVM prototype and sample applications. Section 5 discusses
the related work. Finally, we summarize the contribution of this
paper and give an outlook for future work in Section 6.

* Work done while the author was an intern at IBM T.J. Watson
Research Center during summer 2003.

Copyright is held by the author/owner(s).
WWW 2004, May 17–22, 2004, New York, New York, USA.
ACM 1-58113-844-X/04/0005.

155

2. MOTIVATIONS
With the popularity of XML, it has become necessary for web-
based applications to handle a variety of XML documents. To
facilitate the development and the deployment of XML
applications, an extensible, integrated XML processing model and
platform is required. However, the emergence of various XML
applications poses a great challenge to providing such an
integrated processing model. XML documents provide data in
different structures based on schemas and how the data is
interpreted depends on the application.

 For example, Figure 1 shows an employee data constructed
according to a schema. In this example, the salary of the
employee should be obtained from a web service. Upon
processing such an employee element, different applications may
handle it in different ways. For instance, one application may
insert the information into a database, while another may display
the information to the user. In other words, an XML application
has the freedom to define the semantics of the data.

XML Schema [24] was approved as a W3C Recommendation
in May 2001 and is now being widely used for structuring XML
documents in Web based applications. The design of XML
Schema incorporates object-oriented analysis and design
principles. Object-oriented technologies have been proven to be
an effective methodology to analysis and design applications.
However, currently most Web applications are implemented
based on low-level technologies directly. It is beneficial to
provide a framework to process XML data in an object-oriented
approach following the XML schema design. For example, in
Figure 1 the employee element can be considered as an object
and its “behavior” can be realized through the application
development framework.

With the evolution of an application development, the
schemas defined for the application may be changed in
accordance with new requirements. The best way for applications
to keep up with the evolution of schemas is to maximally reuse
previously developed software. If a component-based model can
be utilized for XML application development, then the required
updates can be limited to a small set of components. Components
can also be dynamically updated and new features can be added
without difficulties. For example, let us assume the schema of the
employee data in Figure 1 is changed for some reason. An
element phonenumber is added as a sub-element of
employee. In the model proposed in this paper, the changes to
the application are limited to only two components, as we will see
in Section 3.2.

Another motivation of the XVM is related to the processing of
compound XML documents – documents contain vocabularies
from a set of different namespaces. Using this feature, XML

content from one specification can be used in other XML
specifications without having to define new specifications each
time. For example, SVG, MathML fragments, and XForms [24]
can be embedded inside HTML documents. Obviously, it is
inefficient and costly to develop separate processing applications
for the variety of different types of compound documents that
may ensue. A better approach is to use a component-based
framework to construct the processing application reusing
existing components that have been implemented in individual
namespace applications. In this way, little or no extra work is
needed to build these new applications. Section 4.3.2 will show
how the reusability of existing components is supported in our
architecture in a compound XML scenario.

In the web-based application framework, web browsers are
used to display the content of markup languages, like HTML, on
the client side. Since a web browser initiates web applications and
supports user interactions, it can be viewed as an application
container, and this emphasizes the importance of web browsers in
web-based applications. With the advent and extensive use of
XML, one limitation of current web browsers is becoming
apparent. The commonly used Web browsers, such as Internet
Explorer and Netscape, were originally designed to display
HTML content, which makes it hard to extend them to support
general XML applications. An XML application has the freedom
to define its own vocabulary and specify the semantics of the
vocabulary. However, current web browsers cannot cope with the
semantics of arbitrary XML applications.

XML can also be used to facilitate the distribution of
processing load from a web server to a web client. In order to do
that, application specific XML data can be sent and processed on
the client side. With the current web browsers, this feature is not
fully explored. Although, the Extensible Stylesheet Language
Transformation (XSLT) [10] can convert XML data into HTML
or XHTML format for a web browser, XSLT cannot solve
everything. That is because the target language of transformation
is HTML or XHTML and the limitation of using HTML remains,
as it is not suitable for specifying semantics for all applications.
For example, the salary element in Figure 1 needs to access a
remote service to get the actual data. No matter how you translate
the data, you cannot express the remote service access semantic in
HTML. Without knowing how to access the remote service, it is
not possible for web browsers to display the data as desired.

Using client-side JavaScript enables more interactivity, and
gives web applications a certain amount of freedom to implement
dynamic semantics. However, JavaScript is not a panacea.
JavaScript does not have a built-in component model, nor can it
be reasonably expected to be suitable for implementing large and
complex applications. Such applications normally require
component-based facilities for extensibility and reusability.

Motivated by the above observations, we propose a
component-based XML processing framework — XML Virtual
Machine (XVM). In the XVM, the association between elements
and components connects the XML data to its behavior. XML
applications can implement their application logic in an extensible
and reusable way.

3. XML VIRTUAL MACHINE (XVM)
In this section, we will show the proposed application framework
and how the XVM can be used in web based applications. Then,
we introduce the key ideas behind the XVM framework and
present more details about the XVM architecture. In the rest of the

Figure 1: An employee element.

<employee>

 <name>Bill</name>

 <id>000001</id>

 <salary>

 <webservice name="PayrollService" />

</salary>

</employee>

156

paper, we will use the Document Object Model (DOM) interface
to introduce the XVM. However, this framework can also be built
up on Simple API for XML (SAX) interface only with some
changes to the implementation.

3.1 The Application Framework
The XVM is a component-based technology. Instead of deploying
a monolithic package that includes every feature, a component-
based system can add new features or upgrade existing features
using components [1]. Figure 2 depicts the framework of how the
XVM can be used for web-based applications. On the server side,
an application server built on the XVM can process XML
documents and/or XML data from data channel connections. To
support legacy HTML browsers, HTML formatted data is
transferred to the client. For XML browsers or applications, built
on the XVM, XML data can be directly sent to the client. XML
browsers can realize the semantics of the XML data through the
related XML application. Each XML application consists of a set
of components, whose structure will be introduced in the
following sections.

For both server- and client-side XVM, the application
components can be downloaded dynamically from component
repositories. The dynamic downloading feature makes it
unnecessary to install everything of an application before running
it. The XVM-based applications can adapt to computing
environments with limited resources such as handheld devices.
Another benefit is that an application has the freedom to choose
what and when to download components even during runtime.
Also, components are cacheable inside the XVM with the most
frequently used components cached locally for better performance
and rarely used ones being downloaded on demand. In most cases,
components are downloaded only once during the first run. After
that an application will run without additional cost and delay of
downloading components.

Inside the XVM, a registry service is used to locate
components, which will be detailed in Section 3.5. The whole
XVM application architecture is not only a development
framework; it is also a deployment framework. When an
application needs to be upgraded, only the registry needs to be

changed to replace existing components or add new components.
The updated/new components will be automatically downloaded
for the application. In this way application maintenance is made
much simpler.

3.2 Components and XML Element
Association
In the XVM architecture, the key idea is a mapping between
XML elements and software components, which associates XML
elements with software components. The component is
responsible for realizing the application logic related to the
associated element and providing services to other components.

Components are building blocks for constructing XML
applications. They are reusable software units that can be
dynamically composed into larger components through the XVM
component composition and mapping mechanism. The
composition is based on XML document information being
processed. The element to component mapping is mediated by
the XVM registry service.

Figure 3 illustrates the mapping between components and
element nodes in the document. When an XML document is
loaded into the XVM, a DOM tree is built. Corresponding to the

XML Application / XML
Browser

XVM

Registry Service

 App Server

XVM Data Channel

HTML Browser

HTML

XML

XML

Component Repository

Component

Component

Server Client

HTTP/SOAP

HTTP

Figure 2: The XVM Application Framework.

DOM Tree

Bootstrap
exec() Component

Component

Component

Component

Component

Translate

Translate

Translate

Translate

Translate

Figure 3: Mapping between Components and DOM
Element Nodes.

157

root element node of the DOM tree, the root component is first
created and executed. During the execution of the root component,
if it needs the services of sub-components corresponding to the
child nodes in the DOM tree, these sub-components will be
created. The actual translation from DOM nodes to components is
performed by the XVM automatically through the registry service.
In this way, a tree structure of components is dynamically
composed. The execution of these components then realizes the
semantics of the XML document. Every component implements
one or more interfaces. Through the interfaces, the component can
be invoked not only by the components in the same namespace
but also the components in other namespaces. In this way, a
compound document can be processed in the same framework
without extra effort.

We shall use the employee data in Figure 1 as an example to
explain the association. From the viewpoint outside of the
employee element, the employee component is responsible for
processing the data contained inside the employee element. Since
name and id elements are trivial data, it is not necessary to
assign components to them (although an application designer
could choose to do so). The employee component can directly
access the data of these child elements through the DOM
interface.1 As for the salary element, given that it needs web
service access, we design a component to be associated with it.
The task of the salary component is to use the employee id
information, which is passed from the employee component, to
obtain the salary information from the web service described
within the salary element. When the employee component
encounters the salary element, it asks the XVM to create a salary
component and uses the interface provided by the salary
component to get the salary information. With all the employee
data in hand, the employee component can then process the
information according to the semantics of the employee element.

We should emphasize that not every element is necessarily
associated with a component. The designer has the freedom to
choose the granularity of components. For example, one can use
one component to process one type of XML data, e.g., the whole

1 Trivial XML data can be converted to “simple data” components,

thereby completing XML-to-component transformation. But
we will not consider it here for performance reasons.

segment of SVG or MathML data. On the other hand, one can
associate components to meaningful elements or functionally
independent elements, e.g., the basic shape elements in SVG. In
this way, compound XML documents can be processed by
invoking correspondent components, without the need to write an
application for each combination.

When a schema is changed, only the related components need
to be updated. Back to the example in Section 2, if
phonenumber is added to employee, a new component
corresponding to phonenumber may or may not be needed
(depending on the application). Among the existing components,
only the component corresponding to its parent element
(employee) needs to be updated. We shall see in Section 3.5,
the component update is a simple job with the introduction of the
component registry service.

3.3 XVM Kernel
As illustrated in Figure 4, the XVM kernel manages DOM
information, components, and component instances. It also
contains common libraries, e.g., communication services that are
needed by XML applications. The DOM manager provides the
implementation of the DOM Recommendations. The Instance
Manager relies on the Component Manager to create instances of
components. It tells the Component Manager the component key,
which contains the XML namespace and tag name information, of
a component. The Module Manager looks up the registry and
finds the location of the corresponding component. If the
component is not already downloaded and cached locally, the
Component Manager retrieves the component, and uses the
component class loader to load the component classes. Finally,
the Instance Manager uses the returned component class to create
instances for applications.

The DOM manager loads XML data and builds an XML
DOM tree. In this way, components have the ability to
dynamically change the document structure. This is more useful
in client-side applications, where dynamic data manipulations
according to user activities are necessary. For server-side
applications, where performance is more important, SAX
interface can be used. This can be viewed as a progressive
application loading process. A component can be loaded and
started to run without the need to wait for the rest data to be fully
loaded.

3.4 Component Structure
In the XVM a component implements one or more interfaces. An
interface is a group of services (operations or methods) that a
component exposes. Different interfaces correspond to different
aspects of an application. Interfaces can be extended and
combined forming an inheritance structure as in Figure 5 above.
Several basic interfaces have been predefined in XVM. For
example, the Viewer interface provides the simple rendering
interface, and the Doer interface provides start and stop methods
for controlling the execution of a component. Component
developers can extend or combine existing interfaces and they can
also add their own interfaces.

As illustrated in Figure 5, inside a component, there is a proxy
object and one or more module objects. A proxy is the portal of a
component, through which other components can access the
services. One proxy may support multiple interfaces, which are
implemented by modules. Proxies provide a dynamic binding
mechanism between interfaces and modules. Each module

XVM Kernel

DOM
Manager

 Instance Manager Communi-
cation
Services

 Component/Module Manager

ModuleModule

Registry
service

Class
Loader

Module

XML Application
XML Application

XML Application

…

Figure 4: The XVM Kernel Illustration.

158

implements one or more interfaces of the proxy. During a method
invocation, if the implementation module object is not loaded, the
proxy asks the XVM kernel to load the module into memory.
Then, the proxy passes the invocation to the module object.

The introduction of proxy and modules in the XVM gives
more freedom for component developers to choose the suitable
granularity of modules. With dynamic binding, components can
be dynamically downloaded, and the ongoing application
development and maintenance can be facilitated without affecting
the running system. The initial deployment of an application also
becomes simple. The only work needed is to correctly input the
information in the XVM registry service. Components of the
application will be downloaded on demand and frequently used
ones will be cached for better performance.

3.5 Component Key and Registry
In XVM, a component is dynamically constructed according to
the XML DOM information. Each component is associated with
an element in the DOM tree. This association is done through a
registry service, which maps a component key to the location of
the associated proxy object and program modules of the
component. A component key consists of a namespace and a tag
name, which uniquely identifies the component and hence the
proxy of the component. In order to distinguish different modules
of a component, a module index field is added to the key. Please
refer to Figure 6 for the structure of a component key.

An application may have different ways to process the same
XML document in different processing contexts. For example,
with the employee data in Figure 1, an application may insert the
data into a database, or it may display the data to a user. For
different client-side consumer devices different components
suitable for different devices may be needed. In order to support
different processing modes, we added the “processing mode” field
in the component key. During a registry lookup, the application
provides the value of the processing mode field to locate the

appropriate component. If there is no processing mode registered
or specified, the default processing mode will be used.

For XML applications without a namespace, we provide an ad
hoc mapping mechanism. An element can specify the location of
the associated component through an attribute “component”.
For example, the foo element
<foo component = “http://example.com/foo”/>

specifies “http://example.com/foo” as the location of
the component.

Before an XML application can be run in the XVM, the (key,
location) pairs of the components should be registered with the
registry service. Once that is done, the Component Manager,
using the registry service, can then access and load the
application’s registered components as needed. The registry
service enables the XVM to deploy or upgrade an application by
merely registering the keys for new components. The actual
component retrieval and loading are automatically done by XVM.

3.6 Why Is It Called XVM?
Readers may be wondering why this architecture is called XML
Virtual Machine. We shall make it clear that we are not
introducing a new XML programming language. Our goal is to
provide a platform for design and construction of XML-based
applications to process different XML documents. If we consider
the XML data as “machine instructions” (a special type of tree
structured instructions) and components as “instruction
interpreters”, then we can easily understand why it is called XML
Virtual Machine. The XVM dynamically loads “interpreters” and
uses them to “interpret” XML “instructions”. An XML document
is like an executable “program” that can be executed by the XVM
to realize the semantics of an application.

4. XVM IMPLEMENTATION
We have built a prototype implementation of an XVM using the
Java programming language. The dynamic class loading
mechanism of Java makes it easy to implement a dynamic
component-based programming architecture. We also used the
Apache Xerces2 DOM implementation [16] in the DOM Manager.

Two different XML applications could use the same Java
class name in their components for different purposes. When they
run at the same time in the XVM, a name clash may occur. To
solve this problem, we used different class loaders for different
XML namespaces. Thus components in different namespaces are
loaded using different class loaders. Since classes loaded by
different class loaders are considered different classes even if they

Name-
space

Tag
Name

Module
Index

Module Key

Component Key

Processing
mode

Figure 6: Component Key Structure

Interface
1

Interface
4

Interface
3

Interface
5

Interface
2

Extend

Combine

Proxy 1

Method()
…

Proxy 2
Method1()
Method2()

…

Implement

Implement

Module1
Method1
() {
…
}

Module2
Method2
() {
…
}

Dynamic
binding

Dynamic
binding

Figure 5: Component Structure Illustration

159

have the same class name, the namespace class loader technique
solved any potential class name clash problem. There is also one
global class hash table shared by all namespace class loaders to
avoid loading the same class multiple times. Each entry in the
table consists of three fields, namespace, class name, and the
loaded class object. Before a namespace class loader tries to load
a class, it checks this global class table first to see if such a class
is loaded already.

In this prototype implementation, the registry service is
simplified. The mapping from a component key to the component
proxy and modules is specified in a configuration file. During
runtime, the XVM kernel consults the configuration file to
retrieve component information.

4.1 An XML Application Container
In order to facilitate the development of XML applications with
GUI, we developed a GUI application container called XML
Browser. The XML Browser is a client runtime platform for
XVM applications. It provides a graphical user interface for
loading and executing XML files.

During startup, the XML Browser creates an XVM instance
and initializes it. The XVM instance will be used to run XML
applications. The XML Browser has a file menu, in which there is
a menu item, “open”, to let users choose the XML file to be
opened via a file open dialog. Users can also directly input the file
name in a text edit field.

When an XML file is loaded into the XML Browser, the
browser invokes the exec method of XVM to start the
application. A graphics container is also supplied to the
application if the application is renderable. The renderable
interface means the application can display GUI content in the
graphics container. With the container in hand, the application
may create its own content and add it to the container. If an
application is not renderable, it does not output any content in the
container. In this case, the browser will show nothing in the GUI.
However, the application may still do some computation and print
out information in the command line terminal.

The XML browser also remembers the history of visited XML
files. Users can use the backward and forward (either by using
menu items or toolbar buttons) actions to navigate through the
history. We shall note that, even without XML browser, an XVM
application can also be run by a default XVM runtime. The
purpose of the XML browser is to provide additional
functionalities to facilitate the implementation of GUI-oriented
XVM applications.

4.2 Sample Applications
Based on the prototype implementation of the XVM, we
implemented several sample XML applications to demonstrate the
broad applicability of the XVM framework.

4.2.1 SXHTML
For this application, we implemented a simple markup language
called SXHTML. It resembles HTML, but supports only a small
set of tags: “sxhtml”, “font”, “p”, “b”, and “i”. We shall note that
for this simple application there could be other ways to implement
besides the XVM. For example, we can simply transform
SXHTML to HTML and use a standard web browser to display
the content. However, the purpose of this simple sample is to
demonstrate the potential ability of the XVM, especially the
extensibility of the XVM. That is, new elements can be added
easily.

In the implementation, we used two methods to display the
content of an SXHTML file. In the first method, each element
tries to display its content using the Java Swing container
manager, with text being displayed as labels. An element
container could be contained in another element container if the
corresponding element of the former is a sub-element of the
corresponding element of the latter. This method provides an
example to build applications using Java Swing containers to
display contents. The other method displays elements and text
inside a single Java Swing container. In both methods, component
contexts are used to pass information from parent element
components to child element components. A sample snapshot is
shown in Figure 7.

4.2.2 Stock Quote
There are two elements, stockQuote and stock, in this sample
application. The stockQuote element module creates a table object,
and adds the table to the container to display. The table content is
obtained from each stock element. The stock component obtains
the stock information either from a local data file or from a web
service according to the information in the attributes of the
element.

In this application, the stock component only performs
computation and provides information to its parent component.
The stockquote element component collects the stock
information from its child components and displays the results in
a table. This demonstrates that, in an application using graphics,
some elements may only provide computation and information;
they may not participate in rendering. Figure 9 shows an
execution snapshot of the sample XML file in Figure 8.
<?xml version="1.0"?>
<sq:stockQuote xmlns:sq="urn:stockquote">
<sq:stock symbol="IBM" source="stockquote

/stockPrices.txt"/>
<sq:stock symbol="SBC" source = "http://

stockquote.com/StockQuoteWAR
/servlet/rpcrouter">

<sq:stockQuoteWebService/>
</sq:stock>

</sq:stockQuote>
Figure 8: Sample File for Stock Quote Application.

Figure 7: Sample Snapshot of SXHTML Application.

160

Figure 9: Snapshot of Stock Quote Application.

4.2.3 Compound XML Application
One important benefit of using XVM and the component-based
methodology is that the developed components can be easily
reused. We show this by using a compound XML document,
which contains elements from four different namespaces. Two of
the namespaces correspond to the two previous XML applications,
whose components are reused. The third namespace defines a
new element with a corresponding component for a Java applet-
like element. The last namespace introduces a new element called
list, which can contain and graphically lay out other components,
e.g., Doer, Viewer, and it is the root element of this application.

In Figure 10, the XML Browser displays the content of the
compound XML document using the described components to
realize its semantics. In the figure, the top is the SXHTML
application and the middle is the stock quote application. On the
bottom, there are two applet elements playing MPEG-4 video
clips, which is a new feature introduced by this application. The
content of the XML file is a simple composition of previous two
applications with their own namespaces, and the new applet-like
elements. The actual Java applet code, for the applet component,
is obtained from the IBM Toolkit for MPEG-4 [19].

While this is a simple sample, more functionality could easily
be added, in the form of components, to build a real world
application. Consider the employee example. If the employee
information (parts or all) is combined with some other elements,
i.e., job information, and the components for both the two
elements exist, there is no need to write a new processing program
for the compound document. This sample demonstrates how an
application can be constructed by assembling existing
components in the XVM framework.

5. RELATED WORK
XML is an emerging standard for data representation and data
exchange on the Internet. XML-based web applications have been
widely used in e-commerce and enterprise information
management. How to effectively design, build, and deploy web-
based applications has been an active field of research. In the
software engineering area, software development principles and
guidelines [1][5][9] have been suggested. The Web-Composition
model [8][9] defines an object-oriented model for constructing

Figure 10: Snapshot of the Compound Application.

161

Web applications. The components in this model are described
using WCML [7], an application of XML. WCML defines
specialized XML vocabulary that provides a simple notation for
objects and their relationships. A compiler translates a WCML
document into a target form. BML [26] is an XML-based
component configuration or wiring language customized for the
JavaBean component model. Unlike WCML and BML, XVM
introduces no new XML vocabulary. The XVM is a runtime
middleware and, at the same time, it can utilize the Object-
Oriented concepts in XML Schema [24] during development.
XML Schema provides Object-Oriented design principles.
Normally, an XML schema can be designed following Object-
Oriented methodology. Consequently the XML elements usually
represent real world objects and the associated components can be
viewed as their behaviors.

J2EE [20], a Java-based technology, provides a high-level
component-based approach to the design, development, assembly,
and deployment of applications. The component of the XVM is a
lower-level software unit with clearly defined interfaces.
Applications are dynamically composed of these components at
runtime based on the XML document being processed. One
important goal of the XVM is to provide an architecture that
enables the dynamic composition of components.

Many efforts have been made to extend the functionality of
current web browsers, e.g., the browser plug-in [21] and Java
applet. Unlike the XVM, Java applet is not specially designed for
XML data processing. The Browser plug-ins can be used to
process different types of documents. However, since it is a
coarse granularity software unit, it is hard to deploy or upgrade.
There has been some research work in the literature to let client-
side browsers directly support XML processing [12][13][14][15].

Several XML application development tools have been
developed [16][18][20][22]. They provide the basic
functionalities for XML data processing, such as data loading,
parsing, etc. The XVM utilizes these tools and provides a more
general framework for XML applications. Cocoon [22] is a Java
server framework that allows the dynamic publishing of XML
content using XSLT (XML Stylesheet Language-Transformation)
[10] transformations. As we have mentioned before, the
transformed data still needs to be processed by the client side. The
XVM architecture can be used to implement not only the
functionality of XSLT (transformation), but also more
sophisticated processing of XML documents.

With more and more web applications exchanging
information on the Web, we are facing the problem of how to
integrate the heterogeneous and loosely coupled applications and
data sources. Web services provide interoperability and
extensibility by the use of XML. Since the XVM is an open
architecture for XML applications, it can also be used to
implement and deploy web services applications. For example,
Dynamic XML documents [1] allow web service invocations
embedded in XML documents. Parts of an XML document are
generated by the results from web services. In such an application,
the XVM can associate a component with the web service
invocation elements, e.g., fun, to handle the embedded
invocations. The Web Services Description Language (WSDL) [4]
is a standardized XML format for describing network services.
The description includes the name of the service, the location of
the service, and how to communicate with the service. WSDLs
can be stored in UDDI [23] registries and/or published on the
Web. For web services defined using XML, web service modules

can also be loaded by the XVM runtime to accept remote requests.
XL [6] is an XML Programming Language whose only type
system is the XML type system. Both the input and the output of
an XL program are XML messages. Unlike XL, the XVM is not a
programming language.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we proposed a component-based XML processing
framework, the XVM. A component to XML element association
connects the XML data with its behavior. By using this
component-based technique the XVM provides high degree of
extensibility and reusability. New components can be easily
added to existing applications and new applications can reuse
existing components without difficulty. These features enable an
XML application to keep up with requirements and schema
evolution, and to process compound documents. With this flexible
component-based architecture application designers and
developers have the freedom to choose the right component
granularity for their applications.

By using the XVM application framework, the deployment of
an application becomes simple and automatic. The registry
mechanism provides component information for the XVM so that
components can be dynamically downloaded and bound to a
running application. Registering application components allows
the framework to deploy and run these applications. The
components of an application are dynamically downloaded and
composed according to the information in the registry for the
XML data being processed. The prototype implementation
together with sample applications demonstrated the applicability
of the XVM framework.

In the future, we plan to support SAX interface inside the
XVM. With this it will not be necessary to load the whole
document inside the XVM before running. Applications can use
this interface to improve performance, which is especially
important for server side applications. XML Events [25] is an
example of a class of XML languages that provide document-
level behaviors, and are expressed as a set of attributes rather than
elements. They typically address non-functional, "cross-cutting"
concerns such as messaging, synchronization, etc., making it
difficult to incorporate as components into primarily functional
decomposition models such as the XVM. We intend to
investigate the techniques developed for Aspect-oriented
Programming [11].

Since the components running inside the XVM are not always
trusted, the security concerns must be addressed in the XVM
framework. The security policy of Java can be used in the
prototype implementation. To support components written in
other programming languages, a comprehensive security
framework is needed. For further adoption and deployment of
XVM on the client side, we plan to implement XVM plug-in
modules for currently widely used web browsers, such as Internet
Explorer and Netscape/Mozilla. With such plug-in modules,
XVM applications will be capable of running on most existing
clients without the need of a full installation of XVM framework.

A complete XVM-based development process model,
including tools for analysis, development, deployment, and
performance evaluation, is an important future work for the XVM
framework that we intend to investigate in the future.

162

7. ACKNOWLEDGMENTS
We would like to thank Dengfeng Gao for spending time to
review and comment on this paper. We would also like to thank
the anonymous reviewers for their valuable comments on the
earlier draft of this paper.

8. REFERENCES
[1] S. Abiteboul, A. Bonifati, G. Cobena, I. Manolescu, and T.

Milo. Dynamic XML Documents with Distribution and
Replication. In Proceedings of the 2003 ACM SIGMOD
International Conference on Management of Data, pages
527–538, San Diego, California, June 2003.

[2] M. Bichler, A. Segev and J. L. Zhao. Component-Based E-
Commerce: Assessment of Current Practices and Future
Directions, In ACM SIGMOD Record: Special Section on
Electronic Commerce, 27(4): 7–14 (1998).

[3] T. Bray, J. Paoli, C. M. Sperberg-McQueen, and E. Maler.
Extensible markup language (XML) 1.0 second edition W3C
recommendation. RECxml-20001006, World Wide Web
Consortium, October 2000.

[4] R. Chinnici, M. Gudgin, J. Moreau and S. Weerawarana.
Web Services Description Language (WSDL). W3C Working
Draft, June 2003.

[5] J. Conallen. Modeling Web Application Architectures with
UML. In Communications of the ACM, 42, No.10:63–70,
1999.

[6] D. Florescu, A. Grünhagen and D. Kossmann. XL: An XML
Programming Language for Web Service Specification and
Composition. In Proceedings of 11th International World
Wide Web Conference (WWW2002), Honolulu, Hawaii,
USA, May, 2002.

[7] M. Gaedke, D. Schemph and H.-W. Gellersen. WCML: An
Enabling Technology for the Reuse in Object-Oriented Web
Engineering. In Poster-Proceedings of the 8th International
World Wide Web Conference, Toronto, Ontario, Canada,
May 1999.

[8] M. Gaedke and G. Graf. Development and Evolution of
Web-Applications using the WebComposition Process
Model. In Proceedings of International Workshop on Web
Engineering at the 9th International World Wide Web
Conference, Amsterdam, The Netherlands, May 2000.

[9] H. Gellersen and M. Gaedke. Object-Oriented Web
Application Development, In IEEE Internet Computing, Vol.
3, No. 1, pp. 60-68, January/February 1999.

[10] M. Kay. XSL Transformations (XSLT) Version 2.0, World
Wide Web Consortium, May 2003.

[11] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes,
J. M. Loingtier, and J. Irwin. Aspect-oriented Programming,
In Proc. of the 1997 European Conf. On Object-Oriented
Programming, Finland (June 1997), Springer-Verlag, LNCS
124.

[12] E. Köppen, G. Neumann and S. Nusser. Cineast - An
Extensible Web Browser, In Proceedings of the WebNet
1997 World Conference on WWW, Internet and Intranet,
Toronto, Canada, November 1997.

[13] C. Mascolo, W. Emmerich, and H. De Meer. XMILE: An
XML based Approach for Programmable Networks, In AISB
Symposium on Software Mobility and Adaptive Behaviour.
York, UK. March 2001.

[14] F. Vitali, L. Bompani, and P. Ciancarini. Hypertext
Functionalities with XML, In Markup Languages: Theory &
Practice 2.4 (2001): 389-410.

[15] P. Vuorimaa, T. Ropponen, N. von Knorring, and M.
Honkala. A Java Based XML Browser for Consumer
Devices, In SAC'02, Symposium on Applied Computing,
Pages 1094–1099, Madrid, March 2002.

[16] W. Zhao, D. Kearney and G. Gioiosa. Architectures for Web
Based Applications. In Fourth Australasian Workshop on
Software and Systems Architectures, February 2002.

[17] The Apache Software Foundation. The Apache XML Project,
http://xml.apache.org/.

[18] The XML C parser and toolkit of Gnome, http://xmlsoft.org/-
index.html.

[19] Composite Media Group. IBM T.J. Watson, IBM MPEG-4
Technologies, http://www.research.ibm.com/mpeg4/-
index.htm.

[20] Sun Microsystems, Inc. Java 2 Platform, Enterprise Edition
(J2EE). http://java.sun.com/j2ee/.

[21] The Mozilla Organization. Plugins. http://mozilla.org/-
projects/plugins/.

[22] The Apache Software Foundation, http://www.apache.org.
[23] Universal Description, Discovery and Integration of Web

Services, http://www.uddi.org.
[24] World Wide Web Consortium, http://www.w3.org/.
[25] XML Events, http://www.w3.org/TR/xml-events/.
[26] Bean Markup Language (BML), http://www.alphaworks-

.ibm.com/tech/bml.

163

