
Improving Web Browsing on Wireless
PDAs Using Thin-Client Computing

Albert M. Lai, Jason Nieh, Bhagyashree Bohra,
Vijayarka Nandikonda, Abhishek P. Surana, and Suchita Varshneya

Department of Computer Science
Columbia University
New York, NY 10027

{amlai, nieh, bn111, vn2107, aps2105, sv2118}@cs.columbia.edu

ABSTRACT
Web applications are becoming increasingly popular for mobile
wireless PDAs. However, web browsing on these systems can be
quite slow. An alternative approach is handheld thin-client com-
puting, in which the web browser and associated application logic
run on a server, which then sends simple screen updates to the PDA
for display. To assess the viability of this thin-client approach, we
compare the web browsing performance of thin clients against fat
clients that run the web browser locally on a PDA. Our results show
that thin clients can provide better web browsing performance com-
pared to fat clients, both in terms of speed and ability to correctly
display web content. Surprisingly, thin clients are faster even when
having to send more data over the network. We characterize and
analyze different design choices in various thin-client systems and
explain why these approaches can yield superior web browsing per-
formance on mobile wireless PDAs.

Categories and Subject Descriptors
C.2.4 [Computer-Communication-Networks]: Distributed Sys-
tems; C.4 [Performance of Systems]: Measurement techniques

General Terms
Experimentation, Measurement, Performance

Keywords
thin-client computing, web performance, wireless and mobility

1. INTRODUCTION
The increasing ubiquity and decreasing cost of Wi-Fi is fuel-

ing a proliferation of wireless PDAs (Personal Digital Assistants).
These devices are enabling new forms of mobile computing and
communication. Organizations are beginning to use these wireless
networks and devices to deliver real-time access to web-enabled
information to end users. This is typically done by running a web
browser on the PDA to provide access to web applications.
An alternative approach to deliver web-enabled information us-

ing thin-client computing. A thin-client computing system consists
of a server and a client that communicate over a network using a re-
mote display protocol. The protocol allows graphical displays to be

Copyright is held by the author/owner(s).
WWW2004, May 17–22, 2004, New York, New York USA.
ACM 1-58113-844-X/04/0005.

virtualized and served across a network to a client device, while ap-
plication logic is executed on the server. Using the remote display
protocol, the client transmits user input to the server, and the server
returns screen updates of the user interface of the applications from
the server to the client. Examples of popular thin-client platforms
include Citrix MetaFrame [7, 20], Microsoft Terminal Services [8,
21], AT&T Virtual Network Computing (VNC) [27], and Taran-
tella [28, 31]. The remote server typically runs a standard server
operating system and is used for executing all application logic.
Figure 1 shows the traditional web browsing model. We refer

to this model with the term fat client because all application logic
executes on the web browser on the client device. Figure 2 in con-
trast shows the thin-client computing model. In the thin-client case,
the web browser runs on the thin-client server instead of the client
device. Only a simple thin-client application for processing user
input and screen updates needs to run on the client.
With thin-client computing, because all application processing is

done on the server, the client only needs to be able to display and
manipulate the user interface. It does not need to run a complex
web browser. Clients can then be simpler devices reducing energy
consumption and extending battery life, which is often the primary
constraint on the benefits of untethered Internet access with wire-
less PDAs. Thin-client users can access applications with heavy re-
source requirements that are prohibitive for typical mobile systems
with low processing power. Furthermore, because the client in the
thin-client model does not run application logic, it does not main-
tain application state. This provides for much better information
security because if an insecure PDA is lost or stolen, no sensitive
application state is available on the device.
Despite the potential benefits of thin-client computing, an impor-

tant issue in the context of web applications is to understand what
kind of web browsing performance a thin-client approach provides.
The common belief is that web content should be delivered directly
to a web browser running locally on the client to achieve the best
web browsing performance rather than running the web browser
on a remote server and relaying the web browser’s display through
a thin-client interface via a remote display protocol. In fact, pre-
vious work [38] in a simulated lossy Wi-Fi environment suggests
that while thin clients may perform better than fat clients under
very lossy network conditions, they may perform worse when used
in near lossless network conditions. However, if a thin-client ap-
proach does indeed have inferior performance compared to using
a native browser, users will be understandably reluctant to adopt a
thin-client computing model despite its other benefits.

143

Web Server
Web

BrowserWireless

Pocket PC

Figure 1: Traditional Fat Client

Web Server
Web

Browser
Thin

Server
Thin ClientWireless

Thin Client Server Pocket PC

Figure 2: Thin Client

We explore the performance of thin clients in both simulated
and real Wi-Fi network environments and quantitatively demon-
strate for the first time that thin-client approaches can provide su-
perior web browsing performance even in lossless Wi-Fi network
environments. For our study, we focus on web browsing perfor-
mance because of the importance and ubiquity of web applications.
Previous studies show that web traffic constitutes the overwhelm-
ing majority of traffic in wireless networks [3, 15, 34]. We com-
pare popular thin-client approaches embodied by CitrixMetaFrame
and Microsoft Terminal Services, which represent the dominant
commercial thin-client products in the marketplace. Because these
thin-client systems are proprietary and closed-source, we obtained
our results using a novel application of slow-motion benchmarking
[25]. This provides a non-invasive measure of thin-client perfor-
mance using network monitoring in a way that properly accounts
for client processing time, which may be significant in the case
of PDAs. We contrast thin-client performance with traditional fat
client approaches in combination with a number of different web
browsers, including Microsoft Internet Explorer, Mozilla, and Net-
Front. Our results show that thin clients perform better than fat cli-
ents even when they send more data during web browsing. Further-
more, they provide better web browsing functionality, correctly dis-
playing web content on a PDAs that is otherwise not viewable using
locally running native web browsers on PDAs. We analyze the dif-
ferences in the underlying mechanisms used by various thin-client
platforms and explain the fundamental characteristics of these ap-
proaches that surprisingly result in superior performance.
This paper is organized as follows. Section 2 gives an overview

of our slow-motion measurement methodology and details the ex-
perimental testbed and application benchmarks we used for our
study. Section 3 describes the measurements we obtained on both
fat-client and thin-client systems in lossy network environments.
Section 4 provides an interpretation of the experimental results and
examines how they relate to the use of different remote display
mechanisms in thin-client systems. Section 5 discusses related
work. Finally, we present some concluding remarks and directions
for future work.

2. EXPERIMENTAL DESIGN
The goal of our research is to compare the web browsing per-

formance of Wi-Fi wireless PDAs using thin-client systems versus
fat clients running native web browsers. For our thin-client sys-
tems, we compared the performance of Citrix MetaFrame XP and
Microsoft Windows 2000 Terminal Services, the two most popu-
lar commercial thin-client products in the marketplace. In this pa-
per, we also refer to the thin-client systems by their remote display
protocols, which are Citrix ICA (Independent Computing Architec-
ture) and Microsoft RDP (Remote Desktop Protocol), respectively.
To evaluate their performance, we designed an experimental Wi-
Fi (IEEE 802.11b) testbed and various experiments to assess both
thin-client and native web browsing performance. Section 2.1 in-
troduces the non-invasive slow-motion measurement methodology
we used to evaluate thin-client performance. Section 2.2 describes
the experimental testbed we used, which includes both simulated

and real Wi-Fi environments. Section 2.3 discusses the mix of
benchmarks used in our experiments. We focused on the perfor-
mance of widely deployed commercial solutions in all of our ex-
periments to provide representative and realistic results.

2.1 Measurement Methodology
Because thin-client systems are designed and used very differ-

ently from traditional desktop systems, quantifying and measuring
their performance effectively can be difficult. In traditional fat-
client systems, applications run locally, and the processing unit
is tightly coupled with the display subsystem so that the display
updates resulting from executing the application are rendered syn-
chronously. In thin-client systems, the application logic executes
on a remote server machine, which sends only the display updates
over a network to be rendered on the client’s screen. The applica-
tion processing unit can be completely decoupled from the display
subsystem; therefore, the display updates visible on the client side
may be asynchronous with the application events. Furthermore,
display updates may be merged or even discarded in some systems
to conserve network bandwidth.
To benchmark a conventional system, one can simply script a se-

quence of application events and let the system being tested execute
the script as fast as it can. The result can generally be correlated
with the user experience. However, in thin-client systems, because
the application processing on the server can be out of sync with the
display subsystem on the client, standard application benchmarks
effectively measure only the server’s application logic performance
and do not accurately reflect user perceived visual performance at
the client. The problem is exacerbated by the fact that many thin-
client systems, including those from Citrix and Microsoft, are pro-
prietary and closed-source, making it difficult to instrument them
to obtain accurate, repeatable performance results.
To address these problems, we evaluate thin-client performance

using slow-motion benchmarking, a non-invasivemeasurement tech-
nique previously developed by one of the authors [25]. Unlike
previous slow-motion benchmarking methods, we apply this tech-
nique to web browsing performance in a novel way to also account
for client processing time, which may be significant in the case of
PDAs. We first describe how we use slow-motion benchmarking to
measure web browsing performance, then discuss in Section 2.3 in
further detail how specific web benchmarks were developed using
this technique for our experiments.
To measure web browsing performance, we start with the con-

ventional method of scripting a sequence of web pages using Java-
Script to download one after another such that each subsequent
page request is made as soon as the browser reports the current
page is loaded [40]. We can then measure the total time required to
download the web page sequence as a measure of the web brows-
ing performance of the system. To account for the possibility that
some display updates may not be fully displayed on the client even
though the application processing completes, we also use a slow-
motion version of the same benchmark. We create this version by
altering the original benchmark to introduce delays between the
separate visual components of the benchmark so that the display

144

update for each component is fully completed on the client before
the server begins processing the next display update. For exam-
ple, delays are inserted between web pages for a web benchmark
to ensure that each web page is completely displayed. We can then
compare the measurements of the original benchmark with its slow-
motion counterpart to determine whether any display updates were
not fully displayed in the original benchmark, thereby providing
a measure of the user-perceived performance based on the visual
quality of display updates.
We measure benchmark performance in a non-invasive way by

monitoring network activity. Since we could not directly peer into
the black-box thin-client systems, our primary measurement tech-
nique was to use a packet monitor to capture resulting network
traffic between the client and server. We used this technique to
measure the latency incurred for running each benchmark as well
as the data transferred between server and client. Given a bench-
mark that downloads a sequence of web pages, we measure the la-
tency incurred for running the entire benchmark by monitoring net-
work traffic to determine the time between the first and last packet
sent during the benchmark. We also measure the total data trans-
ferred between server and client during the benchmark. We then
run the slow-motion version of the benchmark and measure the
data transferred between server and client during the slow-motion
benchmark. For the slow-motion benchmark, we monitored net-
work traffic to make sure the delays were long enough to provide
a clearly demarcated period between display updates where client-
server communication drops to the idle level for that platform. To
derive a measure of performance that accounts for any missing dis-
play updates in execution of the original benchmark, we scale the
latency of the original benchmark by the ratio of the data trans-
ferred during the slow-motion benchmark and the data transferred
during the original benchmark. This latency is computed as fol-
lows:

Latency = Latencyoriginal ×
DataTransferredslowmotion
DataTransferredoriginal

(1)

Our measurement technique makes four important assumptions.
First, our approach assumes that if all display updates are com-
pletely processed and displayed, the amount of data transferred
should remain about the same regardless of the rate at which the
benchmark is run. Our previous work [25, 39] demonstrates that
this is in general a valid assumption for existing thin-client systems
such as Citrix MetaFrame and Microsoft Terminal Services, which
do not employ highly adaptive compression techniques that might
result in different degrees of compression depending on the rate at
which display updates are generated.
Second, our approach assumes that display updates that have

been sent from server to client are completely processed by the
client and displayed. Furthermore, we assume serialization of dis-
play updates such that display updates sent to the client earlier are
processed by the client before display updates sent later. If dis-
play updates sent to the client are discarded by the client after they
are sent, the user perceived visual quality of a benchmark could be
affected without any indication in the measurement of data trans-
ferred that some display updates were discarded. In addition, if
the client could discard display updates after they have been sent,
the client could then be ready to process the next set of display
updates without incurring any client processing time for the dis-
carded display updates, making the thin-client system appear faster
in downloading a sequence of web pages without any indication
that display quality was being sacrificed.

Our discussions with engineers of proprietary thin-client systems
such as those from Citrix and Microsoft indicate that these sys-
tems do not discard display updates at the client after they have
been sent. As a result, measuring the data transferred does provide
an indicator of the user perceived visual quality while running a
web benchmark. Furthermore, it is not possible for the client in
a thin-client system to jump ahead and process newer display up-
dates without having completed the older display updates. This
ensures that our technique of measuring the latency of processing
a sequence of web pages on a thin client implicitly accounts for
client processing time as well, since earlier display updates need
to be processed before subsequent ones. Note that we are only re-
ferring here to the ability of the client in a thin-client system to
discard display updates. The server in a thin-client system may
discard display updates before they are sent to the client when web
pages are processed in rapid succession, but those discards would
be reflected in a difference in the data transferred for the benchmark
and its slow-motion version.
Third, our approach assumes that any client processing time that

may be required after the last data packet is sent during the bench-
mark is relatively small and negligible. Since we are monitoring
network traffic to measure latency, any client processing that oc-
curs after the last packet is sent in rendering the last display update
of the benchmark is not accounted for in our measurements. Only
the client processing for the last display update on the last web page
is unaccounted for; client processing time for any intermediate web
pages is fully accounted for using our measurement technique. This
processing time after the last display update for the benchmark can
be made negligible compared to the overall benchmark latency by
simply using a large enough number of web pages in the bench-
mark.
Fourth, our approach assumes that any reduction in latency due

to display updates not being sent while running the original bench-
mark can be accounted for by linearly scaling the latency propor-
tionally to any additional data transferred while running the slow-
motion benchmark case. Since this is a latency estimation tech-
nique, this accounting is generally more accurate when the differ-
ence in the data transferred between the original and slow-motion
versions of the benchmark is not large. Our measurements in Sec-
tion 3 show that this was typically the case for our experiments.
More generally, the latency in running a benchmark using a thin

client increases with the number of display updates that need to
be processed and also increases with the size of the display up-
date that needs to be processed for the same type of display update.
However, different display updates may require different amounts
of processing time per pixel. For example, some thin clients use
display protocols that provide primitives for directly encoding text
so display updates with text send such information as encoded text
primitives rather than low-level raw pixels. On the other hand, thin
clients typically do not provide special primitives for drawing im-
ages and typically decode and process images on the server and
send the corresponding raw pixels to the client for display. As a
result, for a thin client, text display updates typically require more
client processing time per pixel than image display updates, which
are already decoded and just need to be displayed.
In the case of web browsing a set of web pages, web pages typi-

cally consist of a container HTML page that is primarily text and a
set of embedded objects that are most often images. If a web page
in a scripted sequence of web pages is not fully displayed on a thin
client, it is due to the fact that the next web page starts processing
before the last display updates for the current web page have been
fully displayed. This means that the missing display updates cor-
respond to embedded images on the web page, which have a lower

145

per pixel client processing cost than the HTML container page. By
scaling latency linearly based on the difference in data between run-
ning the original and slow-motion version of a web benchmark, we
provide a slower more conservative estimate of thin-client perfor-
mance.
Note that this line of reasoning does not apply to measuring the

performance of a fat client running a native web browser. With a
fat client, decoding of embedded GIF and JPEG images occurs on
the client as opposed to on the server. Such decoding may be more
expensive per pixel than processing an HTML container page. As
a result, applying our slow-motion linear scaling technique to a fat
client running a native web browser may provide a faster estimate
of the latency of such a system if the benchmark executed does not
fully display the web pages on the client.
An alternative approach one might consider in non-invasively

measuring web browsing performance on a thin client would be to
measure the latency between the first packet and last packet trans-
ferred between server and client for each web page in the slow-
motion version of the benchmark, then summed up the latencies
to determine the overall latency of the benchmark. However, this
measurement does not account for the client processing time on
each page that occurs after the last packet of a screen update is sent
to the client until the update is actually completely drawn to the
client screen. If servers and clients have similar processing capa-
bilities, it may be possible to neglect this client processing time in
measuring thin-client performance. However, because client pro-
cessing time can be significant in the case of PDAs, this approach
would not work well for PDAs and would underestimate the web
browsing latency of thin-client systems.
Our novel application of slow-motion benchmarking allows us to

measure thin-client performance without any invasive modification
of thin-client systems. As a result, we are able obtain our results
without imposing any additional performance overhead on the sys-
tems measured. More importantly, the techniques make it possible
for us to measure popular but proprietary thin-client systems, such
as those from Citrix and Microsoft.

2.2 Experimental Testbed
Figures 3 and 4 show the simulated and real Wi-Fi isolated ex-

perimental testbeds we used for our experiments. Each network
testbed consisted of a client machine, a packet monitor, a thin-client
server, and a web server. The simulated Wi-Fi network testbed
used a desktop PC as the client and a network emulator machine
to emulate a Wi-Fi network environment. Both machines were
connected using 100 Mbps Ethernet. We used the simulated Wi-
Fi network to enable more flexible experimentation with different
network characteristics during our study. The real Wi-Fi network
testbed used a Pocket PC handheld PDA as the client and a Lucent
Orinoco AP-2000 wireless access point to provide the Wi-Fi net-
work environment. The client connected to the access point using
a Dell Compact Flash 802.11b wireless ethernet card. The packet
monitor, thin-client server, and web server were the same for both
testbeds. We used two testbeds in part to allow experimentation
with different client configurations.
The features of each system are summarized in Table 1. Except

for the client machines, all machines are IBM Netfinity PCs, each
with dual 933 MHz Pentium III CPUs, 512 MB RAM, 9 GB disk,
and 10/100BaseT NICs. The desktop PC client is a Micron Client
Pro PC with a 450 MHz Pentium II CPU, 128 MB RAM, and 14.6
GB disk. Although the desktop PC is quite modest by current desk-
top PC performance standards, the hardware configuration was se-
lected to provide a more even comparison with a modern PDA. The
Pocket PC PDA is a Dell Axim X5 with a 400 MHz Intel XScale

PXA255 CPU and 64 MB RAM. Because all tests with the wire-
less network were conducted within ten feet of the access point,
we considered the amount of packet loss to be negligible in our ex-
periments. To provide similar network conditions simulated Wi-Fi
testbed, we used the network emulator to limit available bandwidth
to a maximum of 6 Mbps. While the 802.11b specification allows
up to 11 Mbps network bandwidth, previous studies have indicated
that 6 Mbps network bandwidth is more typical of what is achiev-
able in practice [1].
For simplicity and good network performance, both network test-

beds were configured using 100BaseT full duplex switched net-
work connections between all wired testbed machines. In this con-
figuration, network traffic was routed through the packet monitor to
accurately capture network data. Furthermore, when measuring the
performance of fat clients, we reconfigured our thin-client server to
simply act as a packet forwarding machine to provide access to the
web server directly from the client machine. The added latency of
routing through the machines was measured and is negligible.
Whenever possible, we used common system configuration op-

tions, common applications, and common thin-client configuration
options. When it was not possible to configure all the platforms in
the same way, we generally used default settings. Apache 1.3.27
was used as the web server for all of the web benchmarks. All of
the fat-client and thin-client systems were run in Microsoft operat-
ing system environments. All of the systems were configured with
1024x768 display resolution. Since the Pocket PC PDA only has
240x320 screen resolution, scrolling around the display was neces-
sary to see all of the content displayed.
All of the thin-client systems were configured with 1024x768

display resolution and default settings of compression enabled,
memory caching enabled, and disk caching disabled. Data encryp-
tion was disabled to provide a fair comparison with fat clients using
insecure unencrypted HTTP connections. Because the Pocket PC
PDA does not support more than 16-bit color depth, Citrix ICAwas
configured with 16-bit color depth on all platforms. Microsoft RDP
was configured with 8-bit color depth since that was the maximum
color depth supported by the version of RDP used with Windows
2000 Terminal Services, which was used for the thin-client server.
All web and thin-client caches were cleared before each experi-
ment.
To account for performance differences due to different web brow-

sers, we experimented with two different web browsers for each
platform. For the Pocket PC, we used both Microsoft Pocket PC
2003 Internet Explorer, the latest version Pocket PC browser from
Microsoft, and ACCESS’ popular NetFront 3.0 web browser. For
the desktop PC and thin-client systems, we used both Microsoft In-
ternet Explorer 6 and Mozilla 1.4. The use of Internet Explorer on
both platforms provides a common basis for performance compar-
ison. Mozilla was also used with the desktop PC since it represents
the next most widely used web browser. However, since no version
of Mozilla was available for Pocket PC, we used another popular
Pocket PC web browser, NetFront, to compare the performance for
different browsers. All of the web browsers used were configured
with full screen 1024x768 browser window sizes with default cache
settings enabled in each browser. Persistent HTTP 1.1 was used for
all experiments for best performance.

2.3 Application Benchmarks
To measure web performance of both thin-client and traditional

fat-client systems, we used three web browsing application bench-
marks, representative of general consumer web content, clinical
image content as would be viewed by medical professionals, and

146

Role / Model Hardware Operating System Software
PC Thin Client 450 MHz Intel PII MS Win XP Professional Citrix ICA Win32 Client
Micron Client Pro 128 MB RAM MS RDP5 Client

10/100BaseT NIC MS Internet Explorer 6
Mozilla 1.4

Pocket PC Client 400 MHz Intel XScale MS Pocket PC 2003 Citrix ICA Client
Dell Axim X5 64 MB RAM MS RDP5 Client

Dell 802.11b Wireless CF Card MS Pocket PC 2003 Internet Explorer
Access NetFront 3.0

Packet Monitor Dual 933 MHz Intel PIII Debian Linux Testing (2.4.20 kernel) Ethereal Network Analyzer 0.9.13
IBM Netfinity 4500R 512 MB RAM

10/100BaseT NIC
Benchmark Server Dual 933 MHz Intel PIII Debian Linux Testing (2.4.20 kernel) Apache Web Server 1.3.27
IBM Netfinity 4500R 512 MB RAM

10/100BaseT NIC
Thin Client Server/ Dual 933 MHz Intel PIII MS Win 2000 Server Citrix MetaFrame XPe
Packet Forwarder 512 MB RAM Debian Linux Unstable (2.4.20 kernel) MS Win 2000 Terminal Services
IBM Netfinity 4500R 10/100BaseT NIC MS Internet Explorer 6

Mozilla 1.4
Network Emulator Dual 933 MHz Intel PIII MS Win 2000 Server NISTNet 2.0.12
IBM Netfinity 4500R 512 MB RAM Debian Linux Unstable (2.4.20 kernel)

10/100BaseT NIC

Table 1: Testbed Machine Configurations

Web Server Thin Server Packet Monitor Pocket PC
Access Point

Figure 3: Real Wi-Fi Network Testbed

Web Server Thin Server
(packet forwarding)

Packet Monitor
Desktop PC

Network Simulator

Figure 4: Simulated Wi-Fi Network Testbed

a clinical information system as viewed by medical professionals.
We refer to the benchmarks as i-Bench, RSNA, and WebCIS, re-
spectively. We describe each benchmark and how they were modi-
fied to create respective slow-motion versions of each benchmark.
The i-Bench general consumer web content benchmark we used

is based on the Web Text Page Load test from the Ziff-Davis i-
Bench 1.5 benchmark suite [40]. It consists of a JavaScript con-
trolled load of 54 web pages from the web benchmark server. The
pages contain both text and bitmap graphics, with pages varying
in the proportions of text and graphics. The graphics are embed-
ded images in GIF and JPEG formats. We modified the original
i-Bench benchmark for slow-motion benchmarking by introducing
delays of several seconds between pages using JavaScript. The de-
lays were sufficient in each case to ensure that each page could
be received and displayed on the client completely without tem-
poral overlap in transferring the data belonging to two consecutive
pages. We used the packet monitor to record the packet traffic for
the benchmark, and then used the timestamps of the first and last
packet associated with the benchmark to obtain latency measures
for the benchmark, which are then scaled based on Equation 1.
The RSNA clinical web content benchmark we used is a multi-

page test that downloads a sequence of 20 primarily graphical web
pages demonstrating real-time contrast enhancement of mammo-
graphic features via multiscale analysis. This benchmark was cre-
ated from pages used at an exhibition at the Radiological Society of
North America (RSNA) Scientific Assembly and Annual Meeting
[17]. Each page contains 2 mammographic images. The first mam-

mogram image is a static bitmap. The second is generated in real-
time by the web server through a multiscale wavelet enhancement
of the first mammogram image. The image enhancement calcula-
tions are performed by a common gateway interface (CGI) script
running on the web server. The CGI computes the image enhance-
ment and displays the results on the web page. These images are
representative of the kinds of image processing activities that are
anticipated to become commonplace in the clinical practice of radi-
ological diagnosis in the near future. Similar to the i-Bench bench-
mark, we modified the original RSNA benchmark for slow-motion
benchmarking by introducing delays of several seconds between
pages using the JavaScript. The delays were sufficient in each case
to ensure that each page could be received and displayed on the
client completely without temporal overlap in transferring the data
belonging to two consecutive pages. We used the packet monitor
to record the packet traffic for the benchmark, and then used the
timestamps of the first and last packet associated with the bench-
mark to obtain latency measures for the benchmark, which are then
scaled based on Equation 1.
The WebCIS clinical information system (CIS) benchmark is a

multi-page test that downloads a sequence of 18 web pages from
New York Presbyterian Hospital’s Web-based clinical information
system (WebCIS) [6, 10]. WebCIS displays data from a variety of
clinical data sources including results from laboratory, radiology,
and cardiology departments. These pages contain primarily tex-
tual data in free text and in tabular form. Navigation and forms
submission is JavaScript driven. The pages selected for the bench-

147

Name Description
PC FAT IE PC running native Internet Explorer
PC FAT MOZ PC running native Mozilla
PC ICA IE PC running Citrix ICA client w/ Internet

Explorer
PC ICA MOZ PC running Citrix ICA client w/ Mozilla
PC RDP IE PC running Microsoft RDP client w/ In-

ternet Explorer
PC RDP MOZ PC running Microsoft RDP client w/

Mozilla
PDA FAT IE PDA running native Internet Explorer
PDA FAT NF PDA running native NetFront
PDA ICA IE PDA running Citrix ICA client w/ Inter-

net Explorer
PDA ICA MOZ PDA running Citrix ICA client w/

Mozilla
PDA RDP IE PDA running Microsoft RDP client w/

Internet Explorer
PDA RDP MOZ PDA running Microsoft RDP client w/

Mozilla

Table 2: Platform Configurations Used

mark were based upon common page sequences derived through
CIS log analysis [5]. CIS log analysis is a method based on data
mining and Web usage mining used to discover patterns of CIS us-
age. One of the techniques used in this method, sequential pattern
discovery, was applied to a year’s worth of WebCIS logs to identify
common sequences of data access in WebCIS. We used these typi-
cal sequences in the WebCIS benchmark in order to reflect the us-
age patterns of actual clinical users of WebCIS. Similar to the pre-
viously discussed benchmarks, we modified the original WebCIS
benchmark for slow-motion benchmarking by introducing delays
of several seconds between pages to ensure that each page could
be received and displayed on the client completely without tem-
poral overlap in transferring the data belonging to two consecutive
pages. We used the packet monitor to record the packet traffic for
the benchmark, and then used the timestamps of the first and last
packet associated with the benchmark to obtain latency measures
for the benchmark, which are then scaled based on Equation 1.

3. MEASUREMENTS
We ran the three web benchmarks on both fat-client and thin-

client systems running on both the desktop PC and handheld PDA
with the three different web browsers and measured their resulting
performance. We report results for the twelve different combina-
tions shown in Table 2. The primary performance measurements
for running each web benchmark are presented in terms of average
web page download latencies for each system. For completeness,
we present data showing three measurements for each benchmark:
(1) the average web page download latency computed using Equa-
tion 1, (2) the average amount of data transferred per web page
while running the slow-motion version of the benchmark, and (3)
the ratio of the data transferred when running the slow-motion ver-
sion of the benchmark versus the original benchmark, which we
refer to as the latency scale factor. These measurements provide
the first quantitative performance comparisons of handheld thin-
client systems in Wi-Fi network environments. They also provide
some useful data about the performance of different web browsers
in different system configurations.
Figures 5 to 7 show the measurements for running the i-Bench

web benchmark on each of the twelve platform configurations. Fig-

ure 5 shows the average web page latency for running the i-Bench
benchmark on each platform. Experts differ on the amount of la-
tency considered acceptable for downloading a web page. Some
usability studies have shown that web pages should take less than
one second to download for the user to experience an uninterrupted
browsing process [26], while others indicate that the current ad hoc
industry quality goal for download times is six seconds [14]. All of
the platforms provide average web page latencies of less than six
seconds and all of the PC platforms provide average web page la-
tencies of less than one second. However, on the PDA, only the
thin-client platforms provide average web page latencies of less
than one second. On the PDA, ICA MOZ, RDP IE, and RDP MOZ
all provide average web page latencies of a second or less.
More importantly, on both the PC and the PDA, Figure 5 shows

that the thin-client systems provide lower web browsing latencies
than the fat-client systems when using the same browser. On the
PC, ICA IE and RDP IE are 20 to 40 percent faster than FAT IE
while ICAMOZ and RDPMOZ are roughly three times faster than
FATMOZ. The performance difference between the thin-client and
fat-client approaches is even more substantial on the PDA. On the
PDA, ICA IE is almost three times faster than FAT IE while RDP
IE is more than seven times faster than FAT IE. While the Mozilla-
based systems are slower than their Internet Explorer counterparts
on the PC, even the Mozilla-based thin-client configurations sig-
nificantly outperform FAT IE on the PDA. On the PDA, while FAT
NF provides better fat-client performance than FAT IE, FAT NF is
still much slower than all of the thin clients, with the Mozilla-based
thin clients still more than twice as fast as FAT NF.
Figure 5 also shows some performance inversions between the

PC and PDA platforms. On the PC, Internet Explorer performs bet-
ter than Mozilla on all platforms. On the PDA, the non-Microsoft
NetFront browser used in FATNF outperforms the Internet Explorer-
based FAT IE. On the PC, ICA performs better than RDP but on the
PDA, RDP performs better than ICA.
Figure 6 shows the data transferred for running the slow-motion

version of the i-Bench benchmark. For each platform, the data
transferred is generally similar for both the PC and the PDA. As
would be expected, all of the fat clients running native web brow-
sers transfer roughly the same amount of data on both the PC and
PDA. ICA IE on PC and PDA also send roughly the same amount
of data, and ICA MOZ on PC and PDA also send roughly the same
amount of data. However, RDP transfers very different amounts of
data on PC versus PDA, with the data transferred when running on
the PDA being much less than running on the PC. RDP IE on PDA
transfers almost three times less data than RDP IE on PC.
Figure 6 shows that there are also large differences in the amount

of data transferred across different platforms. On the PC, all of the
fat clients transfer less data than all of the thin clients, with ICA
transferring the most amount of data, almost twice as much data as
the fat clients. However, on the PDA, RDP sends the least amount
of data among all of the platforms. RDP IE transfers less than
half the amount of data as the fat clients. ICA still sends the most
amount of data on the PDA, sending almost twice as much data as
the fat clients. Among the thin clients, there are also differences in
the amount of data transferred depending on the web browser used.
For a given thin client, using Internet Explorer resulted in less data
transferred than using Mozilla. For instance, ICA MOZ transfers
roughly ten percent more data than ICA IE on both PC and PDA.
Figures 5 and 6 taken together show that there is generally little

correlation between the latency and the amount of data transferred
for each platform. The fat clients had the worst latency perfor-
mance for both PC and PDA yet generally sent less data, send-
ing the least amount of data for the PC. ICA transferred the most

148

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

P
C

F
A

T
 I

E

P
C

F
A

T
 M

O
Z

P
C

IC

A
 I

E

P
C

IC

A
 M

O
Z

P
C

R

D
P

 I
E

P
C

R

D
P

 M
O

Z

P
D

A
 F

A
T

 I
E

P
D

A
 F

A
T

 N
F

P
D

A
 I

C
A

 I
E

P
D

A
 I

C
A

 M
O

Z

P
D

A
 R

D
P

 I
E

P
D

A
 R

D
P

 M
O

Z

L
a
te

n
c
y
 (

s
)

Figure 5: i-Bench Page Latency

0

10

20

30

40

50

60

P
C

F
A

T
 I

E

P
C

F
A

T
 M

O
Z

P
C

IC

A
 I

E

P
C

IC

A
 M

O
Z

P
C

R

D
P

 I
E

P
C

R

D
P

 M
O

Z

P
D

A
 F

A
T

 I
E

P
D

A
 F

A
T

 N
F

P
D

A
 I

C
A

 I
E

P
D

A
 I

C
A

 M
O

Z

P
D

A
 R

D
P

 I
E

P
D

A
 R

D
P

 M
O

Z

D
a
ta

 (
K

B
)

Figure 6: i-Bench Page Data Transfer

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

P
C

F
A

T
 I

E

P
C

F
A

T
 M

O
Z

P
C

IC

A
 I

E

P
C

IC

A
 M

O
Z

P
C

R

D
P

 I
E

P
C

R

D
P

 M
O

Z

P
D

A
 F

A
T

 I
E

P
D

A
 F

A
T

 N
F

P
D

A
 I

C
A

 I
E

P
D

A
 I

C
A

 M
O

Z

P
D

A
 R

D
P

 I
E

P
D

A
 R

D
P

 M
O

Z

L
a
te

n
c
y
 S

c
a
le

 F
a
c
to

r

Figure 7: i-Bench Latency Scale Factor

amount of data but had better performance than the fat clients. Only
in the case of RDP on the PDA did a platform both have the small
latencies and the least amount of data transferred. However, RDP
still outperformed the fat clients on the PC even though it trans-
ferred more data in that case.
Figure 7 shows the latency scale factor for each platform, which

is the ratio of data transferred when running the original i-Bench
benchmark versus running the slow-motion version of i-Bench. As
one would expect, all of the latency scale factors are at least one,
indicating that the slow-motion version of the benchmark always
transferred at least as much data as the original version of the bench-
mark. For all of the thin-client platforms on both the PC and PDA,
the latency scale factors were all close to one. The largest scale
factor across all platforms was less than 1.15, which means that
the amount of display update data not sent when running the orig-
inal benchmark versus the slow-motion version of the benchmark
was less than fifteen percent. This indicates that despite the decou-
pling between application processing and client display for the thin
clients, most of the display updates were completely sent and pro-
cessed by the thin client even without the delays used in the slow-
motion version of the benchmark. Surprisingly, the largest latency
scale factors occurred for the fat clients running on the PDA. FAT
IE on the PDA had a modest latency scale factor of 1.27 while FAT
NF on the PDA had a latency scale factor of more than three. A
substantial amount of the FAT NF display updates are not properly
sent during the i-Bench benchmark.
Note that even if we did not use the latency scale factor for FAT

IE on the PDA, its average web page latency would still be sub-
stantially worse than the latency for the thin-client systems. If the
latency scale factor for FAT NF was not used, its average web page
latency would no longer be worse than the thin-client systems, but
that would not be an accurate comparison. As a more conserva-
tive measure, we also ran the slow-motion i-Bench on FAT NF and
measured the latency between the first packet and last packet trans-
ferred between server and client for each web page, then summed
up the latencies to determine the overall latency of the benchmark.
Although this measure does not account for client processing time,
the resulting FATNF average web page latency computed using this
method was still no better than the latency of ICA IE on PDA using
the latency scale factor. This shows that FAT NF is still slower than
the thin-client approaches even when we unfairly ignore substantial
portions of its client processing time.
Figures 8 to 10 show the measurements for running the RSNA

web benchmark on each of the twelve platform configurations. Fig-
ure 8 shows the average web page latency for running the RSNA
benchmark on each platform. All of the PC platforms and all of the
thin-client systems on the PDA provide average web page latencies
well under six seconds. However, none of the platforms provided
average web page latencies less than one second. On the PDA, FAT
IE and FAT MOZ provided web page latencies over eight seconds.

More importantly, on both the PC and the PDA, Figure 8 shows
that the thin-client systems overall provide lower web browsing la-
tencies than the fat-client systems when using the same browser.
On the PC, RDP IE had the lowest latencies of all of the platforms
and RDP MOZ had the lowest latencies of all of the Mozilla-based
platforms. However, while there are some differences in latencies
among different platforms on the PC, these differences are rela-
tively small. On the PDA, the latency differences among different
platforms was much more substantial. The PDA fat clients were
generally more than two times slower than the thin clients and in the
worst case, more than five times slower than the fastest thin client.
On the PDA, RDP IE provided the fastest performance. However,
RDP MOZ was roughly fifty percent slower than the ICA-based
platforms. Based on the industry quality goal of download times of
less than six seconds, only the thin clients provided acceptable web
browsing performance on PDAs.
Figure 8 also shows some performance inversions between the

PC and PDA platforms. On the PC, Internet Explorer performs bet-
ter than Mozilla on all platforms. On the PDA, the non-Microsoft
NetFront browser used in FATNF outperforms the Internet Explorer-
based FAT IE. On the PC, ICA performs worse than RDP but on
the PDA, RDP has higher variance in performance when used with
different web browsers and does noticeably worse than ICA when
using Mozilla.
Figure 9 shows the data transferred for running the slow-motion

version of the RSNA benchmark. For each platform, there is some
variability in the amount of data transferred using PC versus PDA.
Figure 9 shows that ICA IE transfer approximately the same amount
of data as the fat-client systems. However, ICA MOZ transfers sig-
nificantly less data. RDP on both the PC and the PDA also transfer
less data than their fat client counterparts.
This difference in data transfer between fat and thin clients may

seem surprising. However, in the RSNA benchmark, the images
transferred to the fat clients were sent as uncompressed GIFs. When
these same images were sent to the thin clients through the remote
display protocol, these images were automatically losslessly com-
pressed. One might assume that this difference in data transfer
would account for the performance difference of the fat and thin
clients.
However, Figures 8 and 9 taken together show that there is gen-

erally little correlation between the latency and the amount of data
transferred for each platform. For the PC, all of the platforms had
similar latencies but there is a factor of two difference in the amount
of data transferred between FAT MOZ, which sent the most data,
and RDP IE, which sent the least data The fat clients had slightly
better performance than ICA on the PC but sent more data. Only
in the case of RDP IE on the PDA and the PC did a platform both
have the small latencies and the least amount of data transferred.
However, RDP MOZ sent the second least amount of data on the
PDA and performed worse than both ICA IE and ICA MOZ.

149

0

1

2

3

4

5

6

7

8

9

10

P
C

F
A

T
 I

E

P
C

F
A

T
 M

O
Z

P
C

IC

A
 I

E

P
C

IC

A
 M

O
Z

P
C

R

D
P

 I
E

P
C

R

D
P

 M
O

Z

P
D

A
 F

A
T

 I
E

P
D

A
 F

A
T

 N
F

P
D

A
 I

C
A

 I
E

P
D

A
 I

C
A

 M
O

Z

P
D

A
 R

D
P

 I
E

P
D

A
 R

D
P

 M
O

Z

L
a
te

n
c
y
 (

s
)

Figure 8: RSNA Page Latency

0

50

100

150

200

250

P
C

F
A

T
 I

E

P
C

F
A

T
 M

O
Z

P
C

IC

A
 I

E

P
C

IC

A
 M

O
Z

P
C

R

D
P

 I
E

P
C

R

D
P

 M
O

Z

P
D

A
 F

A
T

 I
E

P
D

A
 F

A
T

 N
F

P
D

A
 I

C
A

 I
E

P
D

A
 I

C
A

 M
O

Z

P
D

A
 R

D
P

 I
E

P
D

A
 R

D
P

 M
O

Z

D
a
ta

 (
K

B
)

Figure 9: RSNA Page Data Transfer

0

1

2

3

4

5

6

7

P
C

F
A

T
 I

E

P
C

F
A

T
 M

O
Z

P
C

IC

A
 I

E

P
C

IC

A
 M

O
Z

P
C

R

D
P

 I
E

P
C

R

D
P

 M
O

Z

P
D

A
 F

A
T

 I
E

P
D

A
 F

A
T

 N
F

P
D

A
 I

C
A

 I
E

P
D

A
 I

C
A

 M
O

Z

P
D

A
 R

D
P

 I
E

P
D

A
 R

D
P

 M
O

Z

L
a
te

n
c
y
 S

c
a
le

 F
a
c
to

r

Figure 10: RSNA Latency Scale Factor

Figure 10 shows the latency scale factor for each platform, which
is the ratio of data transferred when running the original RSNA
benchmark versus running the slow-motion version of RSNA. As
one would expect, all of the latency scale factors are at least one,
indicating that the slow-motion version of the benchmark always
transferred at least as much data as the original version of the bench-
mark. However, for all of the thin-client platforms on both the PC
and PDA, the latency scale factors were all close to one. The largest
scale factor across all platforms was less than 1.2, which means that
the amount of display update data not sent when running the orig-
inal benchmark versus the slow-motion version of the benchmark
was less than twenty percent. This indicates that despite the de-
coupling between application processing and client display for the
thin clients, most of the display updates were completely sent and
processed by the thin client even without the delays used in the
slow-motion version of the benchmark. Surprisingly, the largest la-
tency scale factors occurred for the fat clients running on the PDA.
FAT IE and FAT NF on the PDA had latency scale factors of more
than three, indicating that a substantial amount of their respective
display updates are not properly sent during the RSNA benchmark.
As discussed in Section 2.1, our latency measurements are more

accurate if the latency scale factors are not that large. Because
of the large latency scale factors for FAT IE and FAT NF on the
PDA, we also obtained a more conservative measure of their per-
formance. We ran the slow-motion i-Bench on these platforms and
measured the latency between the first packet and last packet trans-
ferred between server and client for each web page, then summed
up the latencies to determine the overall latency of the benchmark.
This measure does not account for client processing time. The re-
sulting FAT IE and FAT NF average web page latencies computed
using this method were still worse than the thin-client latencies
shown in Figure 9. This shows that the fat clients are still slower
than the thin-client approaches even when we unfairly compare the
two by including thin-client client processing time and excluding
substantial portions of fat-client client processing time.
Figures 11 to 13 show the measurements for running theWebCIS

benchmark on each of the twelve platform configurations. Figure
11 shows the average web page latency for running the WebCIS
benchmark on each platform. All of the platforms except for FAT
IE and FAT NF on the PDA provided average web page latencies
well under one second. On the PDA, data for FAT IE and FAT
NF are not shown because the browsers were unable to complete
the benchmark. For this benchmark, the platforms that completed
the benchmark all provided acceptable web browsing performance
based on the one-second download metric for providing an uninter-
rupted browsing experience.
While most of the platforms provided acceptable web browsing

performance, Figure 11 shows that thin-client systems generally
provide similar if not lower web browsing latencies than the fat-
client systems when using the same browser. The only case in

which the fat client was faster than the thin client was on the PC
using Internet Explorer. On the PC, FAT IE was slightly faster than
ICA IE and RDP IE. For all other cases, the thin clients performed
better. Using Mozilla with the PC, RDP MOZ was the fastest and
FAT MOZ was the slowest of all systems. On the PDA, RDP MOZ
provided the fastest performance and had the smallest latencies
across both PC and PDA systems. PDA ICA IE provided the worst
performance among the thin clients, roughly twice as slow as RDP
MOZ. However, even the slowest PDA thin client performed bet-
ter than any of the PDA fat client approaches, since none of those
systems could even complete the benchmark.
Figure 11 also shows some performance inversions between the

PC and PDA platforms. On the PC, Internet Explorer performs
better than Mozilla on all platforms. On the PDA, the thin clients
using Mozilla performed better than those using Internet Explorer.
In particular, the Microsoft RDP thin client performed better than
any other system on the PDA using Mozilla, not Microsoft’s own
Internet Explorer. Similarly on the PC, ICA performed better than
RDP using Internet Explorer, even though RDP and Internet Ex-
plorer are both from Microsoft. In contrast, RDP performed better
than ICA using Mozilla.
Figure 12 shows the data transferred for running the slow-motion

version of the WebCIS benchmark. For each platform, the data
transferred is generally similar for the PC and PDA. As would be
expected, all of the fat clients running native web browsers transfer
roughly the same amount of data on both the PC and PDA. ICA IE
on PC and PDA also send roughly the same amount of data, and
ICA MOZ on PC and PDA also send roughly the same amount of
data. RDP transfers slightly different amounts of data on PC ver-
sus PDA, with the data transferred when running on the PDA be-
ing much less than running on the PC. Figure 12 shows that there
are also large differences in the amount of data transferred across
different platforms. On the PC, all of the fat clients transfer ap-
proximately three times as much data as the thin clients. On the PC
and PDA, ICA transfers the least amount of data among all of the
platforms. RDP transfers slightly more data than ICA for both web
browsers on both PC and PDA.
This large difference in data transfer between fat and thin clients

is a particularly surprising result with WebCIS. Because WebCIS
is a text rich application, one would likely come to the conclusion
that a fat client should transfer less data than the graphical repre-
sentation used by thin clients to represent the web page. However,
like many modern web applications, WebCIS makes extensive use
of JavaScript and other code that is executed in the browser. This
code accounts for the surprisingly large amount of the data trans-
ferred to the fat clients. With thin clients, this code does not need
to be transferred to the client and only the end results of the exe-
cution of the JavaScript need to be transmitted to the client. As a
result, thin clients can transfer less data than fat clients even when
primarily textual data is being displayed.

150

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

P
C

F
A

T
 I

E

P
C

F
A

T
 M

O
Z

P
C

IC

A
 I

E

P
C

IC

A
 M

O
Z

P
C

R

D
P

 I
E

P
C

R

D
P

 M
O

Z

P
D

A
 F

A
T

 I
E

P
D

A
 F

A
T

 N
F

P
D

A
 I

C
A

 I
E

P
D

A
 I

C
A

 M
O

Z

P
D

A
 R

D
P

 I
E

P
D

A
 R

D
P

 M
O

Z

L
a
te

n
c
y
 (

s
)

Figure 11: WebCIS Page Latency

0

2

4

6

8

10

12

14

P
C

F
A

T
 I

E

P
C

F
A

T
 M

O
Z

P
C

IC

A
 I

E

P
C

IC

A
 M

O
Z

P
C

R

D
P

 I
E

P
C

R

D
P

 M
O

Z

P
D

A
 F

A
T

 I
E

P
D

A
 F

A
T

 N
F

P
D

A
 I

C
A

 I
E

P
D

A
 I

C
A

 M
O

Z

P
D

A
 R

D
P

 I
E

P
D

A
 R

D
P

 M
O

Z

D
a
ta

 (
K

B
)

Figure 12: WebCIS Page Data Transfer

0.0

0.5

1.0

1.5

2.0

2.5

3.0

P
C

F
A

T
 I

E

P
C

F
A

T
 M

O
Z

P
C

IC

A
 I

E

P
C

IC

A
 M

O
Z

P
C

R

D
P

 I
E

P
C

R

D
P

 M
O

Z

P
D

A
 F

A
T

 I
E

P
D

A
 F

A
T

 N
F

P
D

A
 I

C
A

 I
E

P
D

A
 I

C
A

 M
O

Z

P
D

A
 R

D
P

 I
E

P
D

A
 R

D
P

 M
O

Z

L
a
te

n
c
y
 S

c
a
le

 F
a
c
to

r

Figure 13: WebCIS Latency Scale Factor

Figures 11 and 12 taken together show that there is generally
little correlation between the latency and the amount of data trans-
ferred for each platform. The fat clients varied widely in perfor-
mance, yet transferred similar amounts of data. On the PC, FAT IE
and FAT MOZ transfer the same amount of data yet FAT IE is more
than twice as fast as FAT MOZ. On the PC, RDP IE is faster than
RDPMOZ although RDP IE sends more data. On the other hand on
the PDA, RDP IE is slower than RDP MOZ and RDP IE still sends
more data. The results with the WebCIS benchmark are consistent
with those for the i-Bench and RSNA benchmarks in that there is
not much correlation in any of the results between the latency and
the amount of data transferred for each platform.
Figure 13 shows the latency scale factor for each platform, which

is the ratio of data transferred when running the original WebCIS
benchmark versus running the slow-motion version of the WebCIS
benchmark. As expected, all latency scale factors are at least one,
indicating that the slow-motion version of the benchmark transfer at
least as much data as the original version of the benchmark. The fat
clients that completed the benchmark all had latency scale factors
of one. Only the thin clients had larger latency scale factors, with
the largest being 2.5. This indicates that there is some decoupling
between the application processing and client display for the thin
clients. The effect of this appears to be more significant in the
WebCIS benchmark than in the previous benchmarks. The effect is
also more significant when using thin clients with Internet Explorer
instead of Mozilla to run the WebCIS benchmark.

4. INTERPRETATION OF RESULTS
Ourmeasurements show that thin-client systems can provide func-

tionally better web browsing and faster web page download laten-
cies than fat-client systems, especially in the case of PDAs. These
results are counterintuitive given that thin clients add an extra layer
of software between client and web server, which it would seem
should add extra latency to processing web pages. These results
are also counterintuitive given that our measurements show that
these thin-client systems provide faster web page download laten-
cies even when transferring more data than their fat-client coun-
terparts. To explain the reasons for the behavior shown in our
measurements, we discuss four reasons that account for the per-
formance differences between these systems and point to the ben-
efits of the thin-client approach: limitations of PDA web browsers,
distribution of client and server processing, and display size web
browsing costs.

4.1 Limitations of PDA Browsers
One important reason why our measurements show that thin cli-

ents can provide better performance on PDAs is that web browsers
that run natively on PDAs simply do not work well. Measurements
shown in Figures 5 and 8 not only show that thin clients provide

better performance than fat clients on PDAs, but that native web
browsing on a PDA gives much worse perform than native web
browsing on a desktop PC.
The fat-client model is inherently harder to support from a soft-

ware development perspective. First, the model requires that each
platform needs to be able to run its own web browser, which means
that browsers must be developed for each platform. Supporting
multiple browser versions for different platforms is certainly harder
than supporting just one. This is exacerbated by the fact that a web
browser is a complicated piece of software to start with. Second,
getting a complicated web browser to work effectively on a PDA
is a doubly challenging problem. Not only must complex browser
functionality be stripped down enough to run in a PDA environ-
ment, but it must also be optimized to run in a much more resource
constrained environment as well. Furthermore, as earlier PDAs
were even more resource constrained than the relatively powerful
Pocket PC model we used for our experiments, PDA web browser
developers are also faced with the challenge of having to somehow
evolve the web browser from an even more resource constrained
environment while at the same time optimizing it for best perfor-
mance.
The problem of developing effective PDA web browsers was

evident by the poor functionality of these browsers in our exper-
iments. We discuss three examples from our study. A first example
is shown in Figures 7 and 10, in which both the Pocket PC Internet
Explorer and NetFront PDA web browsers consistently had large
latency scale factors. This indicates that they were not completely
drawing the web pages as they cycled through the sequence of web
pages in each benchmark. This behavior occurs because both brow-
sers do not properly support the JavaScript OnLoad event, which is
commonly used to perform some function only after a given web
page has been completely downloaded and displayed. Pocket PC
Internet Explorer and NetFront did not properly handle this event,
which was used in our benchmarks to ensure that a web browser
does not process the next web page until it completes the current
one.
A second more egregious example of poor PDA web browser

functionality is shown in Figure 11, which demonstrates the inabil-
ity of Pocket PC Internet Explorer and NetFront to work with the
WebCIS benchmark. This problem was again due to poor support
for JavaScript by these PDA browsers. The JavaScript used in this
benchmark is the same code used in the WebCIS web-based clini-
cal information system [6], which is widely deployed and used at
New York Presbyterian Hospital. The lack of browser functional-
ity in PDA browsers means that these devices could simply not be
used to access a production web-based information system.
A third example is that the Pocket PC Internet Explorer browser

advertises its ability to a web server that it can use HTTP 1.1 and
persistent connections. However, the behavior it exhibits is com-
pletely nonstandard and is in fact more like that of using non-

151

persistent connections. In our experiments, for each request for
a page of HTML or an image, Pocket PC Internet Explorer opened
a new connection. After the data for the object is received, it closed
the connection using a TCP reset, forcing the connection to close
abnormally, resulting in a separate connection for each web object.
In contrast to the fat-client model, thin clients do not require

the development and maintenance of complex software on multi-
ple platforms. Only a simple thin-client application needs to run
on each client platform. Since all application logic resides on the
server, only a web browser that runs on the server is required, de-
spite having a plurality of different client devices. Thin clients can
then leverage substantial existing investments in PC web browser
technology. These investments provide for a more optimized web
browser with a more highly tuned rendering engine, which can be
effectively used via a thin-client system on any client. This results
in much better performance on PDAs than running native PDA web
browsers that may not function well in the first place. More impor-
tantly, there are production web applications such as WebCIS with
a significant investment in their development that do not run on web
browsers designed for PDAs and would require significant modifi-
cation in order to support those browsers. These applications are
also often not tested on PDA browsers. In contrast, thin clients
leverage desktop web browsers to work seamlessly with such pro-
duction systems without any modifications.

4.2 Distribution of Client and Server
Processing

Another important reason why our measurements show that thin
clients can provide better performance than fat clients on both PCs
and PDAs is how each approach distributes client and server pro-
cessing. A fat client places all of the web browsing processing on
the client. This places complex browser processing on a client,
which is often slower than typical servers. In particular, PDAs are
necessarily resource constrained devices given their size and power
requirements. Servers on the other hand do not have these limita-
tions and can be larger and more powerful machines.
In contrast, a thin client runs its web browser application logic

on the more powerful server while only running a simple thin-client
application for processing display updates on the client. The thin-
client model provides a better distribution of web browsing pro-
cessing requirements by putting the complex, more resource inten-
sive processing on the server. Our measurements showed that the
thin clients outperformed the fat clients when using the PC client.
This performance difference was largely due to the fact that the web
browser was running on a faster server when using the thin client.
For example, for the i-Bench benchmark, Internet Explorer running
on the server was twice as fast as the same browser running on the
slower PC client. This difference in performance more than com-
pensates for the extra processing involved with the extra layer of
software introduced with the thin-client systems.
The difference in processing power between server and client

was not simply an issue of CPU speed, but it was also an issue of
CPU architecture functionality. The Pentium III CPU in the server
was designed as a powerful server CPU. In contrast, the Dell Axim
PDA used for our study is based on the Intel XScale PXA255 CPU.
The Dell Axim PDA is considered one of the more high perfor-
mance PDAs available today, but its XScale CPU was designed as
a lower cost, low power, integrated CPU to work in the context
of mobile devices. These are different design goals and result in
different functionality. In particular, the Pentium CPU in the server
provides MMX instructions, which can be used to provide very fast
image processing operations. The XScale CPU does not provide
this functionality. Internet Explorer takes advantage of MMX in-

structions when available to dramatically improve the speed of GIF
and JPEG decoding and processing. As a result, GIF and JPEG de-
coding and processing on the server was well more than an order
of magnitude faster than such processing on the PDA, even though
the difference in CPU clock rate of the server CPU and PDA CPU
was only a factor of two. The thin-client approach takes advantage
of this speed difference since its web browser processing occurs
on the server. In contrast, the fat-client approach is limited by the
client and cannot take advantage of the special CPU instructions
available on the server to optimize GIF and JPEG processing. Thin
clients provide a model of distributing client and server processing
and functionality that matches well with the underlying client and
server hardware resources.

4.3 Display Size Web Browsing Costs
Another reason why our measurements show that thin clients can

provide better performance than fat clients on PDAs is how each ap-
proaches display updates. When accessing a web page, a fat client
sends all of the data related to that web page, regardless of whether
or not the entire page is viewed. This aspect is particularly impor-
tant when considering the limited display sizes on PDAs. Because
screen sizes are so limited on PDAs, frequently a large portion of a
web page is never viewed by the user, but is sent to the client web
browser anyways. This limitation is fundamental to the model of
HTTP.
In contrast, with thin clients, the model is based upon display up-

dates. The server does not need to send to the client what is not be-
ing displayed. Because of the small display size of PDAs, this gives
an opportunity to optimize what information is sent from server to
client for each display update. In particular, a thin-client system
can avoid sending display updates that are not actually viewed and
only send data associated with display updates that are visible on
the client. This server-side clipping optimization not only reduces
the amount of data that needs to be sent, it also reduces the amount
of display update processing required on a client. Both of these
benefits can result in improved performance for thin clients.
As shown in Figures 5, 8, and 11 RDP provides the best perfor-

mance on the PDAs for all three benchmarks, in part because it uses
this display clipping optimization. The impact of the optimization
can be seen by comparing the amount of data transferred using RDP
on the PC versus the PDA in Figures 6, 9, and 12. For all of the
benchmarks, RDP sends less data when used from the PDA versus
the PC because of the PDA’s much smaller display size. This effect
is most pronounced with the RSNA benchmark, where PDA RDP
IE transfers eight times less data than PC RDP IE.
Not all thin clients provide this display clipping optimization.

Figures 6, 9, and 12 show that ICA transfers roughly the same
amount of data on both the PC and the PDA. ICA sends the entire
display to the client even though the viewable region is smaller than
the display. ICA then pans around the desktop through clipping the
viewable region on the client side. As a result, ICA sends more
data than RDP since it performs the clipping after transmission to
the client.

4.4 Connection Model
One final reason why thin clients can provide better performance

than fat clients on wireless PDAs is due to their connection model.
A web browser opens up one or more TCP connections to download
a web page and its embedded objects. Even if persistent HTTP
is used, at least one connection needs to be opened up for each
domain name. A DNS lookup may be needed for each domain
name as well. With a fat client running a native PDA browser, these
DNS lookups and multiple connection setups must occur over the

152

wireless network. If the wireless network is lossy, this behavior
can severely degrade web browsing performance [38]. In contrast,
a thin client approach runs the web browser on the server and only
needs a single persistent connection to the thin-client server, which
then opens up one or more connections over the wired network to
any web servers. This eliminates the cost of DNS lookups and
multiple connection setups over the wireless network. The cost of
maintaining a connection once it has been setup is much lower than
the cost of connection setup especially in the presence of packet
loss due to the larger timeouts used by the TCP exponential backoff
mechanism during connection setup.
In our experiments, DNS lookups and connection setup cost was

not a significant factor in the performance difference between fat
clients and thin clients. However, our experiments are not rep-
resentative of more realistic web surfing behavior when multiple
web servers are accessed, requiring multiple DNS lookups. Fur-
thermore, our experiments were conducted under near ideal wire-
less network conditions where the client device was located right
next to the Wi-Fi access point. Network conditions would not be as
ideal in practice in the presence of interference from physical bar-
riers and other networks. In those circumstances, the cost of DNS
lookups and connection setup would be a more significant factor
that would further increase the performance improvement of thin
clients over fat clients.

5. RELATEDWORK
In addition to the systems discussed in this paper, several other

thin-client and remote display systems have been developed. These
include Sun Ray [30, 32], Tarantella [28, 31], VNC [2, 27], X [29]
and extensions such as low-bandwidth X (LBX) [4] and Kaplinsk’s
VNC tight encoding [13], as well as remote PC solutions such as
Laplink [18] and PC Anywhere [33]. Several studies have exam-
ined the performance of thin-client systems [16, 30, 35, 22, 36,
23, 24, 25, 37, 39]. These studies have focused on measuring the
performance of thin clients in network environments with differ-
ent network bandwidths and latencies, but have not considered the
performance of thin-clients in wireless networks or PDAs. More
recently, another study co-authored by one of the authors of this
paper demonstrated that thin clients can outperform fat clients in
lossy wireless networks [38] due to several factors, including lower
connection setup costs and the ability to ignore previous display
updates that may have been lost. That study did not consider using
PDAs and the resulting performance and functionality impact.
Other approaches to improving the performance of mobile wire-

less web browsing have focused on using transcoding and caching
proxies in conjunction with the fat client model [19, 12]. Top Gun
Wingman was a proxy-based system that pushed some of the ap-
plication complexity to a back end proxy server [9]. The proxy
transcoded images into scaled reduced fidelity images and trans-
lated HTML into a simplified markup language. The system effec-
tively requires a web browser reimplementation by introducing a
HTML parser in the proxy and a specialized application for display
and layout at the client. Another approach used a combination of
a transcoding proxy and a content negotiation scheme to optimize
the content transmitted to the client based on client advertised ca-
pabilities [11]. Our thin client approach differs fundamentally from
these fat client approaches by pushing all web browser logic to the
server, leveraging existing investments in desktop web browsers to
work seamlessly with production systems without any web proxy
configuration or web browser modifications.

6. CONCLUSIONS AND FUTUREWORK
We have presented the first experimental study to quantitatively

compare the web browsing performance of thin-client systems ver-
sus traditional fat clients running native web browsers on wireless
PDAs. To make this study possible, we used a variation of slow-
motion benchmarking that effectively accounts for end-to-end web
browsing latencies in a non-invasive manner. This technique ac-
counts for client processing time during web browsing, which can
be significant when using PDAs.
Our measurements demonstrate that thin clients provide better

web browsing performance than fat clients across a wide variety of
web content, including general consumer content, medical imaging
content, and text-based clinical information content widely used in
a major academic medical center. Our results show that thin cli-
ents can, in some cases, require less bandwidth to achieve superior
web browsing performance than fat clients. Our results also show
that thin clients can in other cases achieve superior web browsing
performance even when they send more data during web browsing.
More importantly, our results demonstrate that thin clients provide
better web browsing functionality than fat clients running native
web browsers on PDAs. While all web page content was view-
able using thin clients, several of our experiments demonstrated
that PDA web browsers were not able to properly display web page
content with any significant JavaScript functionality.
Our results show that thin clients provide faster and more func-

tional web browsing by leveraging existing investments in widely
used desktop web browsers and by pushing complex web browsing
application logic from less powerful mobile devices to more power-
ful servers. Our results also show that thin clients can provide faster
web browsing than fat clients by clipping the display region on the
server before it is sent to the PDA, reducing both client processing
time and network bandwidth requirements.
Our study explores two important dimensions of web browsing

performance on wireless PDAs, speed and functionality. Another
important dimension of performance in the context of PDAs is en-
ergy consumption. We have conducted some preliminary studies of
energy consumption which indicate that thin clients can extended
the battery life of a PDA to last significantly longer than with fat
clients. However, the cause of this needs to be investigated fur-
ther. Given that battery life is a dominant factor in the performance
of PDAs, the benefits of thin clients for energy consumption is an
important area that merits future work.

7. ACKNOWLEDGMENTS
This research was supported in part by NSF grant CCR-0219943

and an IBM Sur Award. Albert Lai is supported by a National Li-
brary of Medicine training grant NO1-LM07079. Klaus Schauser
initially suggested that thin clients may outperform fat clients on
PDAs, motivating this study. Madhuri Shinde assisted with run-
ning the benchmark experiments. Andrew Laine, Yinpeng Jin, and
Elizabeth Chen provided the application data for creating some of
the benchmarks used in this study.

8. REFERENCES
[1] 80211 planet. http://www.80211-planet.com/.
[2] Virtual Network Computing.

http://www.uk.research.att.com/vnc.
[3] A. Balachandran, G. M. Voelker, P. Bahl, and P. V. Rangan.

Characterizing user behavior and network performance in a
public wireless lan. In Proceedings of the 2002 ACM
SIGMETRICS international conference on Measurement and

153

modeling of computer systems, pages 195–205. ACM Press,
2002.

[4] Broadway / X Web FAQ.
http://www.broadwayinfo.com/bwfaq.htm.

[5] E. S. Chen and J. J. Cimino. Automated Discovery of
Patient-Specific Clinician Information Needs Using Clinical
Information System Log Files. In Proc. AMIA Symp., pages
145–149, Nov. 2003.

[6] J. J. Cimino, S. A. Socratous, and P. D. Clayton. Internet as
clinical information system: application development using
the world wide web. J. Am. Med. Inform. Assoc.,
2(5):273–284, Sept.-Oct. 1995.

[7] Citrix MetaFrame 1.8 Backgrounder. Citrix White Paper,
Citrix Systems, June 1998.

[8] B. C. Cumberland, G. Carius, and A. Muir.Microsoft
Windows NT Server 4.0, Terminal Server Edition: Technical
Reference. Microsoft Press, Redmond, WA, Aug. 1999.

[9] A. Fox, I. Goldberg, S. D. Gribble, and D. C. Lee.
Experience with top gun wingman: A proxy-based graphical
web browser for the 3com palmpilot. In Proceedings of
Middleware ’98, Lake District, England, September 1998,
1998.

[10] G. Hripcsak, J. J. Cimino, and S. Sengupta. WebCIS: large
scale deployment of a Web-based clinical information
system. In Proc. AMIA Symp., pages 804–808, 1999.

[11] A. Joshi. On proxy agents, mobility, and web access. Mobile
Networks and Applications, 5(4):233–241, 2000.

[12] J. Kangasharju, Y. G. Kwon, and A. Ortega. Design and
implementation of a soft caching proxy. Computer Networks
and ISDN Systems, 30(22–23):2113–2121, 1998.

[13] C. Kaplinsk. Tight Encoding.
http://www.tightvnc.com/compare.html.

[14] T. Keeley. Thin, High Performance Computing over the
Internet. In Proceedings of the 8th International Symposium
on Modeling, Analysis and Simulation of Computer and
Telecommunication Systems, page 407, San Francisco, CA,
Aug. 2000. IEEE Computer Society.

[15] D. Kotz and K. Essien. Analysis of a campus-wide wireless
network. In Proceedings of the 8th Annual International
Conference on Mobile Computing and Networking, pages
107–118. ACM Press, 2002.

[16] A. Lai and J. Nieh. Limits of Wide-Area Thin-Client
Computing. In Proceedings of the 2002 ACM SIGMETRICS
International Conference on Measurement and Modeling of
Computer Systems, pages 228–239, Marina del Rey, CA,
USA, June 15-19, 2002. ACM Press.

[17] A. Laine, M. Shim, I. Koren, W. Huda, and B. Steinbach.
Multiscale Processing Techniques for the Enhancement of
Digital Radiographcs. In Radiological Society of North
America (RSNA) 83rd Scientific Assembly and Annual
Meeting, Chicago, IL, USA, Dec. 1997.

[18] LapLink, Bothell, WA. LapLink 2000 User’s Guide, 1999.
[19] A. Maheshwari, A. Sharma, K. Ramamritham, and

P. Shenoy. Transquid: Transcoding and caching proxy for
heterogenous ecommerce environments, 2002.

[20] T. W. Mathers and S. P. Genoway.Windows NT Thin Client
Solutions: Implementing Terminal Server and Citrix
MetaFrame. Macmillan Technical Publishing, Indianapolis,
IN, Nov. 1998.

[21] Microsoft Windows NT Server 4.0, Terminal Server Edition:
An Architectural Overview. Technical White Paper, 1998.

[22] Windows 2000 Terminal Services Capacity Planning.
Technical White Paper, 2000.

[23] J. Nieh and S. J. Yang. Measuring the Multimedia
Performance of Server-Based Computing. In Proceedings of
the 10th International Workshop on Network and Operating
System Support for Digital Audio and Video, pages 55–64,
Chapel Hill, NC, June 2000.

[24] J. Nieh, S. J. Yang, and N. Novik. A Comparison of
Thin-Client Computing Architectures. Technical Report
CUCS-022-00, Department of Computer Science, Columbia
University, Nov. 2000.

[25] J. Nieh, S. J. Yang, and N. Novik. Measuring Thin-Client
Performance Using Slow-Motion Benchmarking. ACM
Trans. Computer Systems, 21(1):87–115, Feb. 2003.

[26] J. Nielsen. Designing Web Usability: The Practice of
Simplicity. New Riders Publishing, Indianapolis, Indiana,
2000.

[27] T. Richardson, Q. Stafford-Fraser, K. R. Wood, and
A. Hopper. Virtual Network Computing. IEEE Internet
Computing, 2(1), Jan./Feb. 1998.

[28] Tarantella Web-Enabling Software: The Adaptive Internet
Protocol. SCO Technical White Paper, Dec. 1998.

[29] R. W. Scheifler and J. Gettys. The X Window System. ACM
Trans. Gr., 5(2):79–106, Apr. 1986.

[30] B. K. Schmidt, M. S. Lam, and J. D. Northcutt. The
Interactive Performance of SLIM: A Stateless, Thin-Client
Architecture. In Proceedings of the 17th ACM Symposium on
Operating Systems Principles (SOSP), volume 34, pages
32–47, Kiawah Island Resort, SC, Dec. 1999.

[31] A. Shaw, K. R. Burgess, J. M. Pullan, and P. C. Cartwright.
Method of Displaying an Application on a Variety of Client
Devices in a Client/Server Network. US Patent No.
6,104,392, Aug. 2000.

[32] Sun Ray 1 Enterprise Appliance.
http://www.sun.com/products/sunray1.

[33] PC Anywhere.
http://www.symantec.com/pcanywhere.

[34] D. Tang and M. Baker. Analysis of a local-area wireless
network. In Proceedings of the 6th annual International
Conference on Mobile Computing and Networking, pages
1–10. ACM Press, 2000.

[35] Thin-Client Networking: Bandwidth Consumption Using
Citrix ICA. IT clarity, Feb. 2000.

[36] A. Y. Wong and M. Seltzer. Operating System Support for
Multi-User, Remote, Graphical Interaction. In Proceedings
of the USENIX 2000 Annual Technical Conference, pages
183–196, San Diego, CA, June 2000.

[37] S. J. Yang and J. Nieh. Thin Is In. PC Magazine, 19(13):68,
July 2000.

[38] S. J. Yang, J. Nieh, S. Krishnappa, A. Mohla, and
M. Sajjadpour. Web Browsing Performance of Wireless
Thin-Client Computing. In Proceedings of the Twelfth
International World Wide Web Conference (WWW 2003),
Budapest, Hungary, May 20-24, 2003.

[39] S. J. Yang, J. Nieh, M. Selsky, and N. Tiwari. The
Performance of Remote Display Mechanisms for Thin-Client
Computing. In Proceedings of the 2002 USENIX Annual
Technical Conference, Monterey, CA, USA, June 2002.

[40] i-Bench version 1.5. http://etestinglabs.com/
benchmarks/i-bench/i-bench.asp.

154

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

