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ABSTRACT 
An increasingly large amount of such applications employ service 
objects such as Servlets to generate dynamic and personalized 
content. Existing caching infrastructures are not well suited for 
caching such content in mobile environments because of 
disconnection and weak connection. One possible approach to this 
problem is to replicate Web-related application logic to client 
devices. The challenges to this approach are to deal with client 
devices that exhibit huge divergence in resource availabilities, to 
support applications that have different data sharing and 
coherency requirements, and to accommodate the same application 
under different deployment environments.  

The Replet system targets these challenges. It uses client, server 
and application capability and preference information (CPI) to 
direct the replication of service objects to client devices: from the 
selection of a device for replication and populating the device with 
client-specific data, to choosing an appropriate replica to serve a 
given request and maintaining the desired state consistency among 
replicas. The Replet system exploits on-device replication to 
enable client-, server- and application-specific cost metrics for 
replica invocation and synchronization. We have implemented a 
prototype in the context of Servlet-based Web applications. Our 
experiment and simulation results demonstrate the viability and 
significant benefits of CPI-driven on-device service object 
replication. 

Categories and Subject Descriptors  
C.2.4 [Computer-Communication Networks]: Distributed 
Systems – Client-server, distributed applications. 

General Terms  
Measurement, Performance, Design 

Keywords  
Service, replication, preference, capability, reconfiguration, 
synchronization 

1. INTRODUCTION 
With the growing popularity of wireless Internet and the advance 
of mobile access technologies, Web applications are increasingly 
accessible for wireless devices such as cell phones, PDAs and 
WiFi-enabled laptops.  Particularly, dynamic Web page generation 
techniques, such as Java Servlet and CGI, have become a trend to 
provide personalized Web pages and context -aware Web services 
to the wireless devices. However, traditional means of optimizing 

dynamic Web content generation and delivery are not well suited 
to the nature of unstable wireless connectivity. When a wireless 
client loses connection (either voluntarily or involuntarily) or 
roams into an area with weak connectivity, common optimization 
techniques, including static page prefetching [3], dynamic content 
caching [6][1][14][27][7], data replication 
[8][16][13][17][15][9][11][18], and content adaptation 
[5][28][22] as well as application offloading, will fail to maintain 
effective interactive operations (e.g., querying account 
information, filling survey forms, checking product inventory) as 
they do not eliminate the need to go through the wireless 
connection for dynamically generated content.  

One solution to enabling disconnected or weakly connected 
operations is on-device service object replication. As wireless 
devices become more powerful and possess more capacity, it 
becomes feasible and foreseeable to replicate some application 
service objects from the server to client devices. A typical 
dynamic Web application can be divided into three parts: Web-
related application logic, back-end application logic, and 
application data. On-device service object replication targets the 
Web-related application logic part, as well as application data 
relevant to that specific device (or user). An example of user-
specific application data is a portfolio of a user’s mutual fund 
account. Note that we assume the Web-related application logic 
performs varying functions from simple Web operations (such as 
converting underlying data to HTML form) to complex tasks 
(such as “thinking” in reaction to user moves in an online board 
game). 

On-device service object replication is by no means a new 
concept. Previous works such as Coda [20], Rover [12], Active 
Cache [4], Active Names [24], and Client-side Include [19] have, 
to varying extents, investigated this concept. However, none of 
such existing research works fully exploited the main distinction 
between server managed service object replication (which is 
mainly for availability and reliability) and on-device service object 
replication: the asymmetry between the server replica and a device 
replica and the asymmetry among device replicas, caused by the 
differences in hardware capabilities and user preferences.  

More specifically, these existing works do not adjust their 
replication strategies for, 

• Divergent device capability, including processor speed, 
available memory and power, and network bandwidth. A 
specific service object may be replicable to some devices but 
not to others. Conversely, a device may be able to replicate 
some service objects but not others.  

• Different application, user and server needs , such as data 
consistency requirements and latency tolerance levels. For 
example, devices with different degrees of connectivity call 
for different degrees of data consistency or freshness. A 
device with WiFi connection can subscribe to live streaming 
stock quotes, while a device with GPRS connection charged 
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by number of packets may only need a refresh at the end of 
the day. 

• Evolving environmental conditions, such as changing 
connectivity or changing server load. A device moving 
between good and bad connection may want to change its 
choice of caching strategies, and a server under changing load 
condition may adjust limits on clients’ access rates. 

Such limitations confine their applicability and the range of 
applications they support.  

In this paper we describe Replet, a flexible system for customizing 
and dynamically adapting the replication of application service 
objects to user devices. At the center of the Replet system is a 
mechanism for the user devices, the application and the server to 
specify their preferences and expressing runtime capability. The 
preference and capability information from different entities might 
be conflicting or overlapping. For instance, the current server load 
and the behavior of clients can yield different preferences in 
tolerable latency for service responses. The system gathers 
preferences and capability information from different entities, 
combines them, and resolves any conflicts among them. 

Preference and capability services provide the foundation for the 
customizability and adaptability of the replication process of 
Replets. In particular, the invocation of a Replet involves decision 
objects using runtime capability information to decide, for each 
service request, whether to invoke the Web-related application 
logic replicated on the device, or its counterpart on the server. 
Such decision objects, called Client-side Invocation Helper (CIH) 
and Server-side Invocation Helper (SIH), are defined through 
preferences and thus can come from the device, the server, or the 
application. A sample CIH is a decision object that chooses the 
replica with lower estimated response time between invoking 
device replica and server replica, and a sample SIH is a decision 
object that always chooses the server replica unless a server load 
threshold is exceeded. 

Likewise, the synchronization of application data in the Replet 
system involves querying a Synchronization Helper (SH) acquired 
from preferences to determine when to sync application data 
replicated on device with the copy residing on the server, and 
whether to lock server copy to ensure serializability. A sample SH 
is one that suggests synchronizing data only when no such 
synchronization has happened yet for that day (or week).  

Replet addresses the divergent device capability problem as it uses 
device capability information and application characteristics to 
guide the selection of devices for replication. It addresses different 
application, server and user needs by allowing each of them to 
specify customized invocation and synchronization strategies. It 
addresses the evolving environmental condition issue by profiling 
of runtime capabilities that dynamically guides the invocation and 
synchronization processes to adapt to environment changes. 

We have implemented a prototype of Replet system and have 
converted several servlet applications into Replet services. The 
prototype does not disable existing devices without Replet, which 
can still access Replets as a normal servlet application. For clients 
with Replet support, our experiments show that Replet can 
improve system performance by reducing response time and 
network traffic for client, reducing server load, and enabling 
disconnected operation. 

Our contributions are as follows: First, to the best of our 
knowledge, Replet is the first system for runtime on-device 
replication targeting dynamic Web applications. Second, our 
preference and capability centered approach allows per-request 

dynamic selection of replica invocation, incorporating client-, 
application- and server-specific cost metrics.  It is the first to 
introduce dynamic replica selection in on-device service object 
replication. Third, the same preference and capability-centered 
approach combined with the data synchronization framework 
gives Replet system extremely flexible support for a broad 
spectrum of consistency schemes. Fourth, our prototype system 
and performance experiments show that, without disabling existing 
clients that do not have Replet support, the Replet system can 
improve system performance by reducing response time and 
network traffic for client, reducing server load, and enabling 
disconnected operation. 

The rest of the paper is organized as follows: Section 2 presents 
the Replet model, its preference and capability services, and the 
process of Replet replication. Section 3 describes a prototypical 
implementation and related experiences. Section 4 evaluates the 
system with experiments and simulations. We compare Replet 
system with related work in Section 5. Section 6 concludes the 
paper. 

2. REPLET SYSTEM 
In this section, we first present the Replet model, followed by 
discussion on capability and preference management in the Replet 
system.  We then describe in detail how to use capability and 
preference information for flexible on-device service replication. 

2.1 Replet Model 
A Replet is a replicable object, and is part of a Replicable Service 
deployed on a server. A Replicable Service consists of one or more 
Replets and, optionally, other non-replicable objects. Each Replet 
of a Replicable Service represents one service interface of the 
Replicable Service. A Replet handles the requests from clients and 
generates results for these requests. Each Replet can have multiple 
replicas, one of which is a primary replica (or Server Replica) that 
resides on the server, while others reside on client devices 
(henceforth Client Replica). Intuitively, a Replet is similar as a 
usual service object such as a Servlet [23], except that it can be 
copied to client devices and serve requests locally. 

 

 
Figure 1: Dissection of a Replet Server Replica 

 

A Replet replica is explicitly divided into code, immutable data 
and mutable data (Figure 1). The code part includes the class files 
that define the Web-related application logic, and it is identical for 
all replicas of the same Replet. However, the mutable and 
immutable data (which can be a combination of in-memory 
objects, files and mobile database tables with records and 
attributes tailored to client’s needs) of a specific Client Replica 
can be different from that of a Server Replica or other Client 
Replicas. For example, a Client Replica can have rows of a 
database table filtered out, which are different from another Client 
Replica. The mutable data of a replica, which can be modified by 
clients, is further divided into a public fragment and a private 
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fragment. The public fragment is shared by a number of clients, 
thus is accessible to the Server Replica and the Client Replicas on 
those clients. The private fragment is specific to a client and is 
only accessible to the Client Replica and its Server Replica. 

Figure 1 depicts a Server Replica. Client Replica on a client device 
is slightly different in that it only has the private mutable data for 
that given client. 

At a given moment, for a given client, a Server Replica can be in 
one of following three states (Figure 2): 

• App-Synchronized: the Server Replica has up-to-date public 
mutable data but does not have up-to-date private mutable 
data for the client; 

• Client-Synchronized: the Server Replica has synchronized 
copies of both public mutable data and the private mutable 
data for that given client; 

• Invoked: the Server Replica was in Client-Synchronized state 
and has been selected to serve a request from the client, and 
the invocation is in the process. 

 

App
Synchronized

Client
Synchronized

Invoked

Service
Response
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Figure 2: State transition of a Server Replica 
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Figure 3: State transition of a Client Replica 

 

Note that a Server Replica can be in Client-Synchronized state for 
one client, but in App-synchronized for another.  
A Client Replica has an additional Selected state, meaning that the 
Replica has not yet been populated with code and data, or the 
code and data have been removed to allow the replication of other 
applications (Figure 3). Note that after invocation, a Server 
Replica transits into App-Synchronized state, while a Client 
Replica transits into Client-Synchronized state. 
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Figure 4: Replet Arena 

 

Replicas of Replets live inside Replet Arenas (Figure 4). A Replet 
Arena is a runtime environment for replicas of different 
applications. A replica in an Arena can either be the Server Replica 
of an application or a Client Replica of the application. A Replet 
Arena consists of following components: 

• The Service Engine Wrapper  
• Preference and Capability Managers 
• The Replication Manager 

The Service Engine Wrapper implements the Service Engine 
Interface and is the delegate for the external service engine chosen 
by the Replet Arena. The Service Engine Interface defines 
methods for deploying and removing a service, and for getting a 
service container for a particular service request to serve the 
request. While the Service Engine Interface is identical for all 
Replet Arenas, different Arenas use different Service Engine 
Wrappers when they employ different service engines. For 
example, one Replet Arena running on a desktop computer could 
use the Service Engine Wrapper for Jakarta Tomcat [2], while 
another running on a PDA could use the wrapper for Jetty [10] 
that can be configured to less than 300KB. 

Preference and Capability Management provide information used 
by the Replication Manager to direct the process of replication: 
from the selection of a client device for replication, and populating 
the device with code and data, to synchronizing replicas and 
choosing a synchronized replica for serving a request. We describe 
Capability and Preference management, and the Replication 
Manager in detail next. 

2.2 Capability and Preference Management 
Replet uses capability and preference information to direct the 
process of replication. Capability is some system status 
information gathered or estimated at the runtime, such as available 
memory, and the response time estimation. Preference information 
consists of preferences pre-specified by the application server, the 
user, or the application, such as the required memory and the 
preferred response time. Comparing preference and capability 
information, Replet can determine which replica to use or whether 
to download a replica from the server. In this subsection, we’ll 
describe Preference and Capability Management in detail. 

2.2.1 Preference Management 
Three participating entities, also called roles, take part in 
preference derivations: the client, the server and the application. 
But the entities often have conflicting or overlapping preferences. 
For example, an impatient user wants to get the results in 10 
seconds while the application estimates the acceptable response 
time to be within 15 seconds. Preference Management merges 
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potentially conflicting partial preferences from different roles into 
a unified global preference. 

Device Preference
<<ClientInvocationHelper, Client>, 5>
<<ResponseTime, 10s>, 8>

App. Preference
<<ClientInvocationHelper, Client>, 6>
<<ResponseTime, 12s>, 6>

Server Preference
<<ClientInvocationHelper, Server>, 4>
<<ResponseTime, 15s>, 7>

Global Preference
<ClientInvocationHelper, Client>
<Response_Time, 10s>

Preference Derivation Template
ROLES={"device", "application", "server"}

ATT_NAME="ClientInvocationHelper"
MAX_PRIORITIES={8, 7, 5}

ATT_NAME="ResponseTime"
MAX_PRIORITIES={8,5,7}

 
Figure 5: Examples in Preference Management 

 

Figure 5 illustrates how Preference Management works. Each 
entity specifies a partial preference that consists of a set of partial 
properties. A partial property is a <property, precedence> 
pair, where property is a property, while precedence is a 
number denoting priority. Each property is a <name, value> 
pair, where name is a string and value can be an arbitrary object. 
For instance, <<ResponseTime, 10s>, 8> in Device Preference 
means that the device preferred response time should be within 10 
seconds with a precedence level of 8. 

In order to derive a global preference, we first validate each partial 
property with Preference Derivation Template. The Preference 
Derivation Template sets maximum priority levels for each partial 
property. If a partial property contains a precedence value higher 
than the maximum level specified in the template, the partial 
property will be considered invalid. For example, ResponseTime 
in Application Preference is invalid because its precedence (i.e., 6) 
exceeds the maximum priority (i.e., 5). 

Afterwards, we merge all valid properties into Global Preference. 
If there are conflicting properties, we only keep those with higher 
precedence values. For example, there are two valid 
ResponseTime properties specified in Client Preference and 
Server Preference, respectively. We keep the one in the Client 
Preference because its precedence value (i.e., 8) is higher. 

2.2.2 Capability Management 
Replet Arena’s capability service maintains capability and 
profiling information of the client, the server, and the application. 
Client capabilities include amount of memory or storage available 
on the device, its CPU processing power, the availability of just-
in-time compiler, down- and up-link bandwidth, and round-trip 
time to the server. A server’s capabilities include its CPU 
processing power, and its load. Application profiling data includes  
storage and memory requirement on some typical device types, 
the range of costs for processing requests on several typical 
devices, observed responses time for requests, current number of 
client replicas for the Replet, as well as the application’s 
requirement for the software environment (such as requiring a 
specific JAR file). 

Some of such capabilities or characteristic data (such as installed 
memory) are static, while others (such as current server load) are 
dynamic. For dynamic information, the Capability Profiler also 
provides statistics for such information, and regression tools for 
fitting and prediction. 

Since capability information has distributed sources, Capability 
(and Preference) Management of client and server side Replet 
Arenas need to exchange their local information to construct the 
global capability information. Such exchange will be described in 
detail in subsection 2.3. Also, Capability Management allows 
other components of the program to subscribe to individual 
capability items, so that they can be notified when the value of 
such capability items change. 

2.3 Replication Process 
The Replication Manager in the Replet system manages the 
replication process of the Replets. A Replet’s replication process 
includes four phases: (1) the selection of a particular client for 
replication (the Selection phase); (2) the populating of the selected 
device with code and data (the Populating phase); (3) the 
invocation of a replica (the Invocation phase); and (4) the state 
synchronization among multiple replicas (the Synchronization 
phase). An important distinction between Replet and a typical 
replication system is that the replication process in the Replet 
system relies heavily on capability and preference information of 
the client, the server and the application, so that the entire process 
is highly flexible. 

2.3.1 Replication Device Selection 
In Selection phase, the Replication Managers of both client- and 
server-side Replet Arenas collaborate to determine whether the 
client device should be one of the replication sites of an 
application deployed on the server. 

The client-side Replication Manager intercepts all the service 
requests that come from the local client and are targeted to the 
services residing in remote servers. For services that have not been 
replicated locally, the Replication Manager will check local 
Preference (which is derived from locally defined Client Partial 
Preference and default Server and Application Partial Preferences) 
and to examine if the local client currently allows Replet 
replication. If it does, the Replication Manager can then attach an 
optional Probe Flag to the request that is going to be forwarded to 
the server. The Probe Flag indicates that the client allows Replet 
replication.  

A server that does not support Replet replication ignores the 
Probe Flag in the request. However, a server that does support 
Replet replication, upon receiving such flag in the request, checks 
if the Replet for the requested service allows itself to be 
replicated. If it does, then the server attaches Server and 
Application Partial Preferences and capabilities to the usual 
service response, and sends them back to the client. Also attached 
to the response is a Client ID that can later be used to distinguish 
different clients, and to server as a proof of permission for 
replication from the server. The Client ID expires after an amount 
of time determined by the Preference. 

Back at the client, when the Replication Manager receives a 
response with server and application CPI and Client ID, it checks 
the Replet’s resource requirement (such as memory and CPU 
usage) against resources available on the device to determine 
whether the device should be a replication site for the Replet. In 
addition, Server and Application Partial Preferences are used to 
replace default values to complete the client-side derivation of the 
Preference. 

2.3.2 Populating a Replication Device 
The Populating phase starts when the client sends the server a 
usual service request with an attached Download Flag. Note that 
this Populating phase can start at any time between the end of the 
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Selection phase and the expiration time of the Client ID. A client 
can use this flexibility to start the Populating phase after enough 
resources have been allocated for replication, or when it expects 
server to be under lower loads. 

The server can choose to send requested code and data back to the 
client immediately (along with usual service response), or 
temporarily decline the client’s populating request, in which case 
the client can make another populating attempt later. The code and 
data to be sent can be specified by the Replet itself, and the Client 
ID can be used to the further customized the data sent to the 
specific client. 

When the Push Endpoint field is present, the server has the option 
of asynchronously pushing requested code and data to the client at 
a time deemed proper by the server, rather than having to attach 
the requested code and data with the service response. This Push 
Endpoint is also used for push-based data synchronization (see 
subsection 2.3.4). 

2.3.3 Service Invocation 
At the end of the Populating phase, the Client Replica of the 
Replet is created and its state is set as Client-Synchronized, i.e., 
the replica’s client-specific mutable data is up-to-date. A Client 
Replica in Client-Synchronized state is able to serve service 
requests that only access client private data, without having to 
synchronizing public data with the server. 

During the Invocation phase, the Replication Manager intercepts 
the service request from the local client, and then consults the 
Client-side Invocation Helper (CIH) for suggestions on where to 
serve the request. A suggestion returned by an Invocation Helper 
(IH) contains two fields: one indicating whether to use the Client 
Replica or the Server Replica for the request, the other indicating 
the confidence of such suggestion. Such suggestion will be 
followed if the confidence level is higher than a threshold defined 
by the Preference: if the suggestion is to use the Client Replica, 
then the request is served locally; otherwise, the Replication 
Manager forwards the request to the server, and relay response 
from the server back to the client, where both the forwarded 
request and response may contain synchronization information for 
client private data.  

In the cases where the client can’t make decisions by itself (that is, 
when the confidence of CIH’s suggestion is below a threshold 
defined by the Preference), it also forwards the request to the 
server, attaching an Adaptive Invocation Flag to the request, 
indicating that it is up to the server to decide where to serve the 
request. Upon receiving such a service request, the server-side 
Replication Manager consults the Server-side Invocation Helper 
(SIH) for suggestion. If the suggestion from the SIH is to serve the 
request on the server, then the Server Replica is used. Otherwise, 
the request is bounced back to the client for handling. 

The challenging issue in service invocation is selecting the right 
replica to invoke.  The suggestions are typically made according to 
a particular cost model. However, cost models often vary with 
different applications, devices and servers. There is no optimal 
cost model that can be predetermined. 

Replet provides a flexible cost model framework through its 
Preference Management. All three entities, the device, the server, 
and the application can specify an IH class that implements a 
particular cost model (see Figure 5) in their partial preferences. 
Preference Management will decide which Helper class to use by 
merging them in Global Preference. An IH has access to the 
Preference and profiled capabilities, as well as the replica itself, in 

implementing the chosen cost model. The following list shows 
some sample cost models we have implemented IHs: 

• A cost model based on user perceived response time, where 
an IH uses profiled capabilities, including previously 
measured request processing time, previously measured 
request and response message sizes, and network 
characteristics, to compare the estimated costs of using the 
Client Replica or the Server Replica. A device moves 
between good and bad connection areas can use this model 
to improve user experience. 

• A cost model based on server load, where the SIH bounces 
Adaptive Invocation requests back to client (along with 
updated server load estimator) when the server load is higher 
than a threshold. The corresponding CIH uses server load 
estimator to predict current server load, and uses Client 
Replica when predicted server load is higher than a 
threshold. 

• A cost model based on total amount of communication 
between the server and the client, where an IH uses profiled 
data including request and response message sizes, CPI 
exchange overhead, and data synchronization cost to choose 
a replica for the request to minimize the communication 
cost. 

 

2.3.4 Data Synchronization 
Until now we have assumed that a service invocation either does 
not access the mutable data of a replica, or that it only accesses 
the portion of mutable data that is private to the client, for which 
it is trivial to synchronize and maintain the consistency as there is 
no concurrent accesses on the same data on multiple replicas. 

Data synchronization and consistency management is much more 
complex when an invocation on a Client Replica reads and/or 
writes public data of a Replet. The Synchronization phase in 
Replet Replication is separated into two stages by the invocation 
phase: a Read Stage before the Invocation phase, and a Write Stage 
after the Invocation phase (see Figure 6):  

• Read Stage: On the client side, when the Replication Manager 
decides to serve a request locally, it consults the client copy 
of the Synchronization Helper (SH) specified by the 
Preference to see if there is a need to read the most up-to-
date version of the Replet’s public data from the Server 
Replica. On the server side, when such read request is 
received, the Replication Manager consults the server copy 
of the SH for the client to determine if it is necessary to 
apply a write-lock to the Server Replica to prevent 
concurrent accesses. The lock expires after a time defined by 
the Preference. Note that since there is one Preference for 
each client, potentially each client can have a different SH. 

• Write Stage: On the client side, after an invocation on the 
Client Replica that modifies the Replet’s public data, the 
Replication Manager again consults the SH to see if there is 
a need to propagate the modification to the Server Replica 
immediately. On the server side, when such modification 
propagation message is received, the Replication Manager 
consults the SH of the client to potentially detect update 
conflicts and resolve such conflicts. The Replication 
Manager then releases the lock on the Server Replica if the 
client acquired one during the Read Stage. Finally, the 
Replication Manager consults SHs of other clients to see if 
the modification needs to be pushed to these clients. 
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Note that the actuation of the Read and Write Stages depends on 
whether the invoked method reads or writes public data. If the 
method does not read or write public data, then the Read or Write 
Stage is bypassed. 

SH is also part of the Preference, and can potentially be defined 
by the client, the server, or the application. Some sample 
consistency maintenance schemes that can be implemented using 
SH include: 

• Pessimistic replication, where one-copy serializability is 
achieved by demanding to refresh from Server Replica before 
each invocation that reads Replet public data, lock the 
Server Replica after refresh, and contact Server Replica after 
invocation for update propagation and lock release. 

• Optimistic replication with 1/K synchronization, where the 
data refreshment and update propagation is carried out once 
for every K invocations that access public data, and no lock 
is applied on the Server Replica. 

• Optimistic replication with push approach, where the client 
depends on updates pushed from the server to maintain the 
freshness of the Replet’s public data. 

The pessimistic replication scheme can be practical if only a small 
fraction of the invocations involve accesses to public data, and/or 
if data synchronization overhead is much less costly than the 
overhead associated with the transport of request and response 
messages and the processing of the request on the server. Other 

sample consistency schemes include one that chooses right update 
rate depending on client capability and current server load for self-
refreshing Web contents, and another enforced by a server under 
unusually high load to temporarily disable a device from reloading 
the content until sometime later. 

3. IMPLEMENTATION 
We have implemented a prototype of the Replet system in Java 
for Web-based applications that use Servlets as service objects. 
Figure 7 illustrates the high-level architecture of this prototype. 
We chose Tomcat Servlet container from the Apache Jakarta 
Project as service engine for the prototype, and we wrote the 
Service Engine Wrapper for Tomcat. 

Replet Arenas are implemented as standalone processes. For a 
given application, the server-side Replet Arena (the Arena that 
hosts the application) functions as a Web server with Servlet (and 
Replet) support, while the client-side Replet Arena is configured 
as a HTTP proxy of the client Web browser. Server-side and 
client-side Replet Arenas communicate using HTTP protocol. 
Fields of Replet replication protocol messages (such as various 
flags, CPI, IH suggestions, and synchronization data) are 
piggybacked with HTTP requests and responses in the form of 
HTTP header fields. 

A Replet extends J2EE HTTPServlet class, and implements the 
Replet interface. The Replet interface specifies methods that can 
be used by the Replication Manager to: 

 

 
Figure 6: Flow chart for data synchronization
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Figure 7: Illustration of prototype implementation 
 

• Get and set client-specific immutable and mutable (both public 
and private) data: such data can be a combination of in-memory 
objects, files and (usually filtered) database tables. The default 
implementation of these methods assumes that there is no 
immutable data, and that the public mutable data consists of 
the entire Web archive (WAR) file of the replicable service 
application except those under WEB-INF/classes and WEB-
INF/lib, while the private mutable data consists of the 
HTTPSession object created for the client. 

• Retrieve and apply updates for synchronization: updates can 
also be represented using in-memory objects, files and tables. 
The default implementation assumes that the entire Web 
archive has been updated. 

The development of a Replet also involves defining the Application 
Partial Preference of the Replet, which includes specifying the classes 
for IHs and SH, as well as their respective initialization arguments. 
We have ported four originally Servlet-based applications using this 
prototype:  WebMail, which replicates emails to the client device 
along with the object that handles emails; WebCalendar, which has 
both private and shared calendar pages; WebChess, where users login 
to their account to play against computer at different skill levels; and 
PurchaseApproval, which emulates a sample corporate workflow. 

During the course of implementing the prototype and the sample 
applications, we identified several important issues that we discuss 
next. 

Nonintrusive replication: The replication process should be 
nonintrusive to both the clients and the server. The most probable 
source of intrusiveness is in the Populating phase, where the Replet 
system needs to collect relevant code and data at the server side, send 
them to the client, and properly install such code and data at the 
client side. To an already overloaded server, this process may 
exacerbate the load situation especially when populating is required 
for many clients in a short period of time; to the client, this process 
may stall the responsiveness of other requests as receiving the replica 
and installing it may be costly for some devices. Our solution is to 
give the server the option of populating a client only when the server 
thinks it is the right time to do so, and we allow the server to 
asynchronously push the replica to the client, so that populating can 
occur between two requests and be less intrusive. 

Server load information: A concise representation of dynamic 
server load information that can be used to closely predict future 
server load is important in the Replet system, as it can help optimize 
the performance of the system with light cost. We have experimented 
with the polynomial regression approach, and our conclusion is that 
this approach offers similar precision with more compact 
representation for the server traces that we targeted (see Section 4.3). 
We also limited the dissemination of server load information so that it 
is piggybacked with some of the responses to the client. 

Session migration: Session migration is necessary to support 
replication in the middle of a client session, and it is the default form 
of populating client device with client-specific mutable data. Our 
session migration implementation relies on cookie-based HTTP 
sessions. During the migration, the client-side Replet Arena creates a 
local session cookie and a new session object. The new session object 
will be populate with contents from the original session on the server 
session, and the newly created cookie will be returned to the client. 

Public data access directives: We use XML-form external directives 
to denote where the GET and POST handling methods of a Replet 
reads or writes public data. However, a Replet is typically used for 
different types of requests. Some of these requests may access public 
data while others may not. To distinguish such request, an approach 
similar to J2EE Servlet mapping is used. Each request type is 
allocated a virtual Replet. While these virtual Replet map to the same 
real Replet, public data access directives are generated for each 
individual virtual Replet. For example, in the WebCalendar 
application, creating an appointment accesses public data while 
viewing an appointment does not. Although the same Replet handles 
these two operations, their URI maps to different virtual Replets 
with different access directives, so that the viewing operation can 
always be operated locally for a Client Replica. 

4.  EVALUATION 
In this section we evaluate the viability and benefits of on-device 
service object replication in the Replet system based on our 
prototype. We describe experiments and their results using some of 
the sample applications we built, as well as simulations that are 
based on one of those sample applications. 

Table 1:  Comparing size cost of replica populating against 
typical responses (in KB). 

 WebChess 
(KB) 

WebCalenda
r (KB) 

Purchase 
Approval (KB) 

Populating 37 - 40 28 – 29.5 73 - 75.5 

Typical 
Response 

6.5 – 9.6 4.2 – 6.3 5.5 - 6.7 

 

4.1 Replica Populating Cost 
In this experiment, we compare the cost of replica populating against 
that of typical responses. Table 1: lists number of bytes in a typical 
HTTP response (including images), and the number of bytes to be 
shipped for replica populating (which also includes images) for three 
applications. Considering each populated application can produce 
multiple responses (this is the case even for Purchase Approval, 
where a single approval may involve multiple steps, and the user 
may check approval status for several times), the cost of replica 
populating is not prohibitively high compared with costs for normal 
service responses. For example, Figure 8 examines the response time 
for the computation-intensive WebChess application. The X-axis 
represents the number of steps of user interaction while the Y-axis 
represents the response time. The upper two curves show the 
response time with and without replication, including the populating 
cost. We can see that the response time drastically drops after replica 
populating occurs at Step 4. In fact, it becomes very close to the 
response time during a low server CPU load (shown as the bottom 
curve). The server used in this experiment is a desktop with 2Ghz P4 
processor and 512MB RAM, and client is a ThinkPad T23 laptop 
connected to the server via IEEE 802.11b wireless network. The load 
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on the server is created by running adjustable compute-intensive 
tasks in the background.  

4.2 Divergence in Request Processing Costs 
This experiment uses two applications, WebChess and WebCalendar, 
and two client devices, an iPAQ 3870 and a ThinkPad T23, to 
demonstrate that profiled device and application capability is 
important for on-device replication. Table 2: shows average 
processing times of the two applications on the two devices. 
Apparently, while the iPAQ, whose JVM does not have just-in-time  

compiler, is capable of serving requests for WebCalendar, it is not 
capable of serving requests for WebChess. This exp eriment 
demonstrates that device and application capability information is 
important in the selection of a device to replicate an application. 

Table 2:  Request processing time for WebChess and 
WebCalendar on two client devices. (in second) 

 Tablet PC (sec) IPAQ 3870 (sec) 

WebChess 0.8 – 3.2  5.5 - 18 

WebCalendar 0.01 – 0.095 0.03 – 0.029 

 

 

4.3 Server Load Prediction 
This experiment demonstrates the effectiveness of using polynomial 
regression for the coarse-grained prediction of server load using 
historic information.  We arbitrarily selected two weeks’ trace of the 
NASA Web server [21]. To predict the server load on any given day 
of the second week, we use a cubic function to fit the load of that day 
of last week, and then use the cubic function to predict the load on 
that day of the second week. Figure 9 shows two curves: one for real 
load on the server during the week of July 9-15, 1995, the other for 
predicted load for the same week based on the actual load information 
of the previous week. The load prediction curve is actually the 

combination of 7 curves, each a cubic polynomial for one day. The 
graph shows that, although polynomial regression over historic data 
cannot precisely predict future server load, it is sufficiently accurate 
for client to distinguish lower load periods from high load periods. 

4.4 Simulation of Consistency Models 
In this subsection, we use simulation to demonstrate the need and 
benefits of having client-specific consistency models and client-
adjustable data freshness requirements. WebCalendar is used as the 
sample application to derive base costs. We assume that for each 
client there is a private calendar page and a public page. There are 
four types of operations, one that reads (but does not write to) the 
public page (PUB-R), one that reads and writes to the public page 
(PUB-RW), one that reads private page (PRIV-R), and one that reads 
and writes to the private page (PRIV-RW). The assumed combined 
size (including header) of a HTTP request and its response for each 
type of operation, as well as different distribution of each type of 
operation for different scenarios, are listed in Table 3:. 

We use Poisson distribution for request arrival rate, using C-RATE 
to denote the rate for requests generated by the client under 
inspection, while S-RATE for server observed overall rate (requests 
from all clients except the one under inspection). We fixed C-RATE 
at 6.67 for all experiments. The real unit of C-RATE does not matter 
as only the ratio between C-RATE and S-RATE is of interest. 

Table 3:  Parameters for the simulation 

 PUB-R PUB-
RW 

PRIV-R PRIV-
RW 

Request+Response 
size 

6KB 4.5KB 5KB 4KB 

Balanced 35% 15% 25% 25% 

Public-Read 
Biased 

80% 5% 10% 5% 

Public-Write 
Biased 

50% 40% 5% 5% 

 

 

 

 
Figure 8: Response time for the WebChess application (on-the-fly replica populating happened at step 4. Note that different steps 

require different amount of computation) 
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Figure 9: Using Cubic Polynomial Function For Server Load Prediction. 

 

 
Figure 10: Changing S-RATE under Public-Read Biased distribution.

  

 
Figure 11: Changing S-RATE under Public-Write Biased distribution. 
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Figure 12: Changing Synchronization Overhead (in KB) 

 

 

Figure 13: Changing Conflict Resolution Overhead (in KB) 

 

We compare the total amount of traffic for the inspected client under 
five different schemes: no replication (NR), pessimistic replication 
(PR), optimistic replication with 1/N synchronization (1/N), ideal 
replication (Ideal) and, server push (Push). The Ideal scheme assumes 
that a client knows every past operation of other clients, so that in 
the Read-Stage, it knows whether it is necessary to refresh state from 
the server, but in the Write-Stage, it will immediately propagate its 
updates regardless future operations on shared state. In the Push 
scheme, the server pushes modification to the clients and clients 
never pull from the server in Read-Stage. The Push Latency, the time 
before it reaches the client is made as a linear function of the server 
arrival rate. We set the default costs for Read-Stage and Write-Stage 
synchronization to 2KB when such synchronizations result in 
communication with the server, and we set the default cost for 
conflict resolution to 32KB. The optimistic scheme is further divided 

into 1/2, 1/4 and, 1/8 three configurations, representing synchronizing 
every 2, 4, and 8 public data accesses.  

Figure 10 shows the communication cost on the inspected client 
when the requests to the server are Public Read Biased, while in 
Figure 11 the requests to the server are Public Write Biased. In both 
graphs, S-RATE changes from 0.83 to over 100. Both graphs show 
that the Push approach has higher costs because of the update 
conflicts caused by the Push Latency. All other approaches that use 
replication have lower costs than the No Replication approach. 
Because reading stale information does not incur penalties similar to 
conflict resolution cost, the 1/N approaches are better than the Ideal 
approach in Public Read Biased distribution at the cost of reading 
out-of-sync public mutable data. The Pessimistic approach under 
Public Write Biased distribution offers performance closest to the 
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Ideal approach as it avoids update conflicts that are frequent under 
this scenario.  

Figure 12 compares the cost of different schemes when we fix the 
cost of conflict resolution at 32KB, and vary the cost of 
synchronization from 1KB to 64KB. S-RATE is set at four times of 
C-RATE. Figure 13 compares the cost of different schemes when we 
fix the cost of data synchronization at 2KB, and vary the cost of 
conflict resolution from 1KB to 512KB. Again, we set S-RATE at 
four times of C-RATE. In both simulations, we assume distributions 
of operations are “Balanced”. The two graphs show that optimistic 
approaches have advantages when synchronization cost increases. 
But they are penalized when conflict resolution cost gets higher. 
These simulations confirm the value of flexibility in supporting 
different synchronization schemes and consistency models for 
different applications and application deployment scales. 

4.5 Analysis of CPI Overhead 
Overhead of CPI is mainly from the Selection phase and the 
Populating phase: the server will send server and application CPI to 
the client if the server agrees to let the client to replicate the service, 
and the client need to send its CPI to the server when it requests to 
start populating. Such overhead is limited since: 

• They are piggybacked with HTTP protocol messages. 
• They occur once during the lifetime of a Client Replica. 

CPI data items are compact, with various Helpers being only 
exceptions. However, we don’t transport Helper object, rather, we 
only transfer Helper class names and initialization arguments. We 
assume Helper classes are retrieved through trusted code repositories 
and can be cached on client devices and on server. 

5. RELATED WORK 
Previous work on server-managed replication is abundant in the 
literature [8], [16], [13], [17], [15], [9], [11], and [18]. In such 
systems, decisions involved in the replication process are typically 
solely made by the server and client devices are not candidates of 
replication sites. Hence server-managed replication does not support 
disconnected environment. By contrast, the Replet system employs 
on-device service object replication that enables disconnected 
operations. 

Coda [20], CSI [19], and Rover [12] are replication systems that 
support on-device replication for mobile and disconnected 
computing. These systems, however, do not specifically target 
dynamic customization of replication. On the contrary, Replet 
incorporates client capability and preference into the replication 
process, enabling client-specific invocation and synchronization cost 
metrics.  

There has also been a lot of research on optimizing dynamic and 
personalized Web content, including dynamic data caching 
[1][1][14][27][7] and content adaptation [5][28][22]. However, their 
approaches do not support disconnected computing because they do 
not cache, replicate or adapt service objects at the client side. In 
comparison, Replet replicate service objects to the client device, 
enabling disconnected operations.  

Active Cache [4] is closely related to our system in that it associates 
a server-supplier code called Cache Applet with each URL. When 
caching a document, a proxy also fetches the corresponding cache 
applet, which can be invoked when a user request is received. 
However, targeting caching proxies rather than end-user devices, 
Active Cache cannot adapt the caching/replication process to 
different client devices because it does not exploit client information. 
In addition, it lacks the flexibility in synchronization among Cache 

Applets of the same document. Compared with Active Cache, our 
approach provides support for client divergence in both replication 
and synchronization. 

Our work is also different from the general Java Applet framework. 
A Replet is intended to be executed on the server. It is only installed 
and invoked on the device for performance optimization. For clients 
of the same Replet, some of them may opt to install and run in on-
device, while others don’t. Even for the same client, the decision of 
which replica to invoke can be made at runtime on per-request basis. 
In addition, our system provides build-in support for 
synchronization between a client and its server, which is not available 
in the Applet system. 

Composite Capabilities/Preferences Profile (CC/PP) is a framework 
for describing and managing a user agent’s capabilities and the user’s 
preferences for optimizing content processing and display [25][26]. 
While CC/PP is widely adopted and offers sophisticated 
implementations, it only focuses on client CPI and does not address 
server and application CPI, and does not address the runtime merging 
and reconfiguration of it. 

6. CONCLUSION, LIMITATIONS, AND 
FUTURE WORK 
In this paper we have presented Replet, a system that uses client, 
server and application capability and preference information to 
achieve flexible on-device replication of service objects, and to 
incorporate client-specific cost metrics for replica invocation and 
synchronization. We have implemented a prototype of the Replet 
system in the context of Servlet-based Web applications. Our 
experiments and simulations demonstrate the viability and significant 
potential benefits of employing on-device service object replication 
with Replets. Such potential benefits include reducing response time 
and network traffic for client, reducing server load, and enabling 
disconnected operation. 

Our current system does not provide direct support for update 
conflict detection and resolution, and it does not address security 
issues involved in on-device service replication. Some of these issues 
will be the focus of our future research. And for other issues, we will 
look for available solutions to apply to our system 
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