
 

 

Automatic Generation of a Differential XSL Stylesheet 
From Two XML Documents 

  
Norihiro Ishikawa, Takeshi Kato, Hidetoshi Ueno, Hiromitsu Sumino and Hideharu Suzuki 

Multimedia Laboratories, NTT DoCoMo 
3-5, Hikari-no-oka, Yokosuka, Kanagawa, 239-8536, Japan 

TEL: +81-468-40-3819 
E-mail: {ishikawa, t_kato, hueno, sumino, hideharu} @mml.yrp.nttdocomo.co.jp 

  
  
ABSTRACT 
  We propose a new technique for generating a differential XSL stylesheet from arbitrarily two XML documents. The Document Object 
Model (DOM) is adopted to express the data structure of XML documents. We propose several algorithms to detect difference information 
between the two DOM trees. The difference information, which consists of its difference type, position and content, is generated for each 
differential node by using proposed algorithms. We use the XSL Stylesheet as the format of expressing difference information, and we also 
propose the way to create XSL Stylesheet from the difference information. 

Keywords 
  XML, XSL, XSLT, XPath, DOM 

1. Introduction 
  Push information delivery services have been emerging as new services over the Internet. 
Contents such as news, advertisement information and weather information are provided from push 
servers. It is desirable to provide difference data of a content if the content is updated because the 
difference between the old content and the updated content tends to be small. The retransmission of 
a whole original content is waste of bandwidth when transmitting the content over the wireless 
network. The paper [1] also showed that the benefit to transmitting difference data only if contents 
are updated. W3C has standardized a technology for transforming XML documents that is called 
XSL Transformations (XSLT) [2]. If a differential content between two XML documents (e.g. 
XHTML document) is generated as an XSL stylesheet and the differential content is only 
transmitted instead of transmitting a whole document, the amount of transmitted data can be 
reduced. When a client receives the differential content, it can reconstruct a whole content, by 
applying the differential content to the original content by using the XSLT engine. To realize the 
above scenario, we propose a technique for the automatic generation of a differential XSL 
stylesheet from arbitrarily two XML documents. 

2. Proposed Technique 
  We adopted the Document Object Model (DOM) [3] to express the XML data structure. Two 
XML documents are parsed and converted into two DOM trees. Differential parts of the two DOM 
trees are detected by using proposed algorithms as described in section 2.1. After detecting 
deferential information, the XSL Stylesheet is created from the information (Figure 1). 

2.1 Detection of Differential Parts from Two DOM Trees 

  Two DOM trees are scanned by using difference-detection algorithms. In this process, deleted 
and inserted nodes are detected. We have considered three algorithms to detect difference parts as 
described below. 

Algorithm-1:  (1) All combinations of nodes in both trees are created. (2) Each combination of 
nodes is compared in all cases, (3) we can find the DOM trees that have maximum number of 
matched nodes. This algorithm is shown at figure 2. 

Algorithm-2: (1) The parenthesis expressions of each DOM tree are compared as follows. (2) Each 
parenthesis expression of tree is compared with the other one from top of a string of character. If 
the maximum common strings between them are detected, those strings are regard as common parts. 
Then each parenthesis expression of tree is compared with the other one again from next character. 
(3) This procedure is repeated until end of string of character and common parts are got. This 
algorithm is shown at figure 3. 

Algorithm-3: (1) Corresponding nodes of the two DOM trees are compared from the root to 
the leaf. (2) This procedure is repeated until the difference between two corresponding nodes 
is detected for the first time. (3) Then the rest of sub trees are regarded as differential parts. This algorithm is shown in figure 4. 

XML
Document

1

XML
Document

2

Conversion into DOM tree

Difference information

Detecting differential parts

Differential
XSL Stylesheet

Generation of 
difference information

Generation of 
differential XSL stylesheet

Figure 1: Generation Process of 
Differential XSL Stylesheet 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 3: Algorithm-2 

Figure 2: Algorithm-1 

int k,m,p;
string treestring1 = Character expression of tree1;
string treestring2 = Character expression of tree2;

for (i = 0 to treestring1.length) {
k = 0; p = 0; m = 0;
for (j = 0 to treestring1.length() - i) {

m = p;
p = treestring2.indexOf(treestring1.substring(i,i + j + 1));
k = j;
if (p = -1) {

break;
}

}
if (i + 1 != treestring1.length()) {

if (k > 0) {
Save as Common Part (treestring1.substring(i,i + k));
if (m != 0) {

Save as Differential Part in After one (treestring2.substring(0,m));
}
treestring2 = treestring2.substring(m + k);
i = i + k - 1;

}
else {

Save as Differential Part in Before one (treestring1.substring(i,i + k + 1));
i = i + k; 

}
}
else {

Save as Common Part (treestring1.substring(i,i + k + 1));
treestring2 = treestring2.substring(m + k);
i = i + k;

}
}

int k,m,p;
string treestring1 = Character expression of tree1;
string treestring2 = Character expression of tree2;

for (i = 0 to treestring1.length) {
k = 0; p = 0; m = 0;
for (j = 0 to treestring1.length() - i) {

m = p;
p = treestring2.indexOf(treestring1.substring(i,i + j + 1));
k = j;
if (p = -1) {

break;
}

}
if (i + 1 != treestring1.length()) {

if (k > 0) {
Save as Common Part (treestring1.substring(i,i + k));
if (m != 0) {

Save as Differential Part in After one (treestring2.substring(0,m));
}
treestring2 = treestring2.substring(m + k);
i = i + k - 1;

}
else {

Save as Differential Part in Before one (treestring1.substring(i,i + k + 1));
i = i + k; 

}
}
else {

Save as Common Part (treestring1.substring(i,i + k + 1));
treestring2 = treestring2.substring(m + k);
i = i + k;

}
}

tree subtree1[] =  new tree[count of all combinations of tree1];
tree subtree2[] =  new tree[count of all combinations of tree2];
tree commonsubtree;

subtree1[] = "All combinations of tree1";
subtree2[] = "All combinations of tree2";
commonsubtree = nothing;

for (i = 1 to (count of all combinations of tree1)) {

for (j = 1 to (count of all combinations of tree2)) {
if (subtree1[i] = subtree2[j]) {

if (Size(commonsubtree) < Size(subtree1[i])) {
commonsubtree = subtree1[i];

}
}

}

}

Save commonsubtree;

tree subtree1[] =  new tree[count of all combinations of tree1];
tree subtree2[] =  new tree[count of all combinations of tree2];
tree commonsubtree;

subtree1[] = "All combinations of tree1";
subtree2[] = "All combinations of tree2";
commonsubtree = nothing;

for (i = 1 to (count of all combinations of tree1)) {

for (j = 1 to (count of all combinations of tree2)) {
if (subtree1[i] = subtree2[j]) {

if (Size(commonsubtree) < Size(subtree1[i])) {
commonsubtree = subtree1[i];

}
}

}

}

Save commonsubtree;

C

B

A(B,C)

A(C)

A(B)

A

C

B

A(B,C)

A(C)

A(B)

A

C

D(C)

D

B(1)

B

A(D,C)

A(D,1)

A(1,C)

A(B,1)

A(B,D)

A(B,C)

A(C)

A(1)

A(D)

A(B)

A

C

D(C)

D

B(1)

B

A(D,C)

A(D,1)

A(1,C)

A(B,1)

A(B,D)

A(B,C)

A(C)

A(1)

A(D)

A(B)

A

1:All Combinations 
of tree

2: Finding 
Maximum 
number of 

matched nodes

A

B D
21

A

B D
21

A

B C

A

B C

Common partCommon part Differential partsDifferential parts

3: Getting
differential

A
B C

A
B D

C1
Compare

AfterBefore

1:parenthesis 
expression

A(B,C) A(B(1),D(C))

Compare “A” with “A(B(1),C(2))”

Extending compared string

Extending compared string

2:Compare before tree with after tree2:Compare before tree with after tree

Compare “,” with “(1),C(2))”

Compare “A(B,” with “A(B(1),C(2))”

Move to next string

Detection of
difference

“A(B” is 
common part

Before: A(B***,C***)
After : A(B(1),C(2))

Before: A(B***,C***)
After : A(B(1),C(2))

“A(B,C)” is common part“A(B,C)” is common part

Compare “,C)” with “(1),C(2))”
Detection of
difference

“,C” is 
common part

3: Getting
differential

Move to next string

Compare “)” with “(2))”

A
B C

A
B D

C1
Compare

End of
String

“)” is 
common part

Before After



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2.2 Generation of Difference Information Using Elements and Attributes of Nodes and XPath 

  This process generates the difference information between two DOM trees. The 
difference information is derived from the information on common and differential 
parts of two DOM trees. The difference information consists of its difference type (i.e. 
deletion, insertion and alteration), position and content for each differential node. The 
position of a node within a DOM tree is represented by XPath [4]. 

2.3 Generation of Differential XSL Stylesheet 

  This process generates a differential XSL stylesheet from the differential 
information. Some considerations should be given to this process, to minimize a 
differential XSL stylesheet. For example, a node in the same level should be 
designated by "node ()", and copying a node without having attributes should be carried out by "<xsl:copy/>". Additionally, the use of an 
abbreviate syntax (See Table 1) and an abbreviate XPath (e.g. relative path) should be considered. 

3. Consideration 
3.1 Evaluation on Difference-Detection Algorithms 

  Future research should look at the following issues and developing prototype 
software of the proposed technique. 
(1) Validation of proposed algorithms 
(2) Comparative evaluation on the performance of proposed algorithms 
(3) Generation of the minimal differential XSL stylesheet from the difference 

information 

3.2 Proposal on New Elements and Functions for XSLT 

 XSLT is not optimized for generating a differential XSLT stylesheet. We propose new elements and functions of XSLT for this purpose. In 
XSLT, a sub-tree can be regarded as a node-set using “<xsl:copy-of>”. However a node-set must include all nodes from the root of a 
sub-tree. Therefore a node-set cannot be used to designate the part of a sub-tree. The part of a sub-tree can not be copied at once using 
“<xsl:copy-of>”. We propose a new function “generation” that designates nodes from the root of a sub-tree to the n-th generation 
descendants. We think that introducing such function can optimize a differential XSLT stylesheet (See Table 2). 

4. References 
1. Jeffrey C. Mogul, et al.: Potential benefits of delta-encoding and data compression for HTTP, Proceeding of SIGCOMM 97 (September 

1997). 
2. J. Clark: XSL Transformations (XSLT) Version 1.0, W3C Recommendation (November 1999). 
3. Arnaud Le Hors et al.: Document Object Model (DOM) Level 2 Core Specification, W3C Recommendation (November 2000). 
4. J. Clark and S. DeRose: XML Path Language (XPath) Version 1.0, W3C Recommendation (November 1999). 

Table 1: Sample of Abbreviate Syntax 

.Self::node()

@attribute::

..

//

Omissible

Abbreviate syntax

Parent::node()

child::

/descendant-or-self::node()/

Description

.Self::node()

@attribute::

..

//

Omissible

Abbreviate syntax

Parent::node()

child::

/descendant-or-self::node()/

Description

<xsl:copy-of select="/A/node()[generation()=2]"/>

<xsl:template match="/A/C"/>
<xsl:template match="/A/C/node()"/>

Using Generation Function 

Using Current XSLT

<xsl:copy-of select="/A/node()[generation()=2]"/>

<xsl:template match="/A/C"/>
<xsl:template match="/A/C/node()"/>

Using Generation Function 

Using Current XSLT

Table 2: Sample of Using Generation Function 

Figure 4: Algorithm-3 

string treeroute1[] = new tree[count of leaf in tree1];
string treeroute2[] = new tree[count of leaf in tree2];
string commonpart;

treeroute1[] = "All route from root to leaf of tree1";
treeroute2[] = "All route from root to leaf of tree2";
leafcount = Select smaller one (count of leaf in tree1,count of leaf in tree2);

for (i = 1 to leafcount) {
routecount = Select smaller one (treeroute1[i].length,treeroute2[i].length);
for (j = 1 to routecount) {

if (treeroute1[i].substring(0,j) = treeroute2[i].substring(0,j)) {
commonpart = treeroute1[i].substring(0,j);

}
else {

break;
}

}
Save commonpart;
}

string treeroute1[] = new tree[count of leaf in tree1];
string treeroute2[] = new tree[count of leaf in tree2];
string commonpart;

treeroute1[] = "All route from root to leaf of tree1";
treeroute2[] = "All route from root to leaf of tree2";
leafcount = Select smaller one (count of leaf in tree1,count of leaf in tree2);

for (i = 1 to leafcount) {
routecount = Select smaller one (treeroute1[i].length,treeroute2[i].length);
for (j = 1 to routecount) {

if (treeroute1[i].substring(0,j) = treeroute2[i].substring(0,j)) {
commonpart = treeroute1[i].substring(0,j);

}
else {

break;
}

}
Save commonpart;
}

A
B C

A

B D
C1

A

B D
C1

NEXT

A
B

Common partCommon part

1:Compare before tree with after tree1:Compare before tree with after tree

A
B C

A

B D
C1

Compare

A
B C

A
B D

C1

A
B D

C1

NEXT

A
B C

A
B D

C1

A
B D

C1

3: Getting
differential

same

same

differential

2: Detection of 
differential

Before After


	ABSTRACT
	Keywords

