
OPTIMIZING PROXIMITY DETERMINATION FOR SEMISTRUCTURED DATA

Raymond K. Wong Michael Barg

Schoolof ComputerScience& Engineering
Universityof New SouthWales
Sydney, NSW2052,Australia�
wong, mbarg � @cse.unsw.edu.au

1. INTRODUCTION

This papersummarizesour mechanismfor efficiently exe-
cutinga proximity searchin nearlineartime for semistruc-
tureddatabaseof moderatesize,e.g.,hundredsof thousands
of XML elements. This includesa methodfor encoding
graphs,anda family of encodingschemesfor representing
this informationin a compressedspace.Readersmayrefer
to [1] for detaileddescriptionandapplications.In particu-
lar, theencodingschemesarespecificallydesignednotonly
to beassmallaspossible,but to facilitatethedirect calcu-
lationof proximity.

Informally, we are looking for all � near � , where �
and � eachrepresenta setof nodes.It is importantto re-
alisethat � and � maybespecifiedby someinexactcriteria
(for example,find all elementscontaining”ticket” nearall
elementscontaining”price”), and so may not be disjoint.
We refer to � asthe Find Set (i.e. what we want to find),
and � theNear Set (i.e. what it is near).Theproblemcan
now formally be statedas follows: we wish to return all
elementsof the Find Set, ranked by their proximity to the
nearest elementof theNear Set.

Whenconsideringsolutionsto this problem,thereare
two fundamentalapproaches.On onehand,we couldpre-
computeall pairwiseshortestdistances,andthenlook these
up asrequired. This methodhasthe advantageof retriev-
ing any distancein constanttime. Algorithms which em-
ploy thismethod,however, necessarilyinvolveO(� ������� �	�)
comparisons.Furthermore,suchpre-computedindexesare
very large (�
�� � in the worst casefor a graphwith
 ver-
tices),althoughmethodshave beenproposedfor minimis-
ing this problem[2]. Updatingthe index to reflectchanges
in thedatabaseis alsoexpensive. Theunderlyingdatabase
needsto be extensively examinedto determineall shortest
distancesinvolving thesinglemodifiednode.

Theotherapproachis to calculatedistancesasrequired,
using someform of graph algorithm. This has the ad-
vantageof virtually no overheadto reflect changesto the
database,aswell asmuchmorereasonablespacerequire-
ments(O �
��). However, as any graphalgorithm requires

arbitrarytraversalthroughanarbitrarygraph,suchanalgo-
rithm couldrequireO(�
������� ������� ���)) randomdiskseeks
in theworst case.Thusthis solutionis impracticalfor any
real implementation.

Our approachfundamentallyfalls into the secondcat-
egory, calculatingthe distancesas requiredusinga graph
algorithm. Insteadof directly examining the graph,how-
ever, we usea family of encodingschemesto representthe
relevantsubgraphsin a verysmallspace(typically no more
than20 bytesfor a singlesubgraph).The distanceis then
calculatedby directly comparingtheseencodings.As the
encodingsaresosmall,theentiresubgraphcomparisoncan
beperformedin mainmemory, oftenutilising only theCPU
cache. As the comparisonsthemselvesheavily utilise bit-
wise comparisonsandoptimisations,distancecalculations
areperformedveryquickly.

We utilise a two phaseapproachto avoid the needfor
performingO(� ������� �	�) comparisons.In practice,our ap-
proachtendstowardseither O(� ������� �	�) comparisonsif
the Near Set encodingmustbe generateddynamically, or
O(� ���) comparisonsif it canbe retrieved from the cache.
Our encodingschemesandthealgorithmswhich usethem
to determineproximity aredescribedin detail in [1].

2. THE PROXIMITY INDEX

The efficiency of our index relies largely on our encoding
schemes.Minimising spaceis importantasit allows more
of the index to be held in main memory. Looking ahead
a little, our encodingschemecan representall subgraphs
from theroot to eachof 1,000,000XML nodesin 7.6 MB.
Givencurrentsystems,it is notunreasonableto holdthisen-
tirely in mainmemory. In orderto efficiently encodea sub-
graph,eachedgein themaingraphis assignedthesmallest
unusedpositive numberwhich is uniqueonly amongst all
edges originating from a given node. This meansthat two
edgescanbeassignedthesamenumberaslongasthey orig-
inatefrom differentnodes.Thisnumberis referredto asthe
edgeidentifier.

2.1. Representing Single Paths

x1
y1

y2

�� ��
�

� �

�

x2

w1

�

BA 1.1
BA 2.1

A

A 1 A 2

A1.3

��
�����

�� �� �� �� �� ��

�� �� �� � � �� ��

�� �� �� ��

�� �� �� ��

�� ��

� ! "" #
$ $ $&%

'''' (""" #
))) *

++++ ,
)))) *

++++ , �

- - -- .
$ $ $ $ $&%

1

1.2

1.1.1 1.1.2 1.1.3

1.1.3.1 1.1.3.2

A

B

B 1

1.1

Figure1: Graphwith IndicatedEdgeIdentifiers

Pathsin the main graphare identifiedby the sequence
of individual edgeidentifiers,which implicitly startfrom a
(virtual) incoming edgeto the root. Nodesare identified
asbeingthe terminusof oneor morepaths. This concept
is illustratedin figure 1. The nodey / is identifiedby the
sequenceof edgeidentifiers”1.1.2”. Notethatthissequence
of edgeidentifiersboth uniquely identifiesthe nodeitself
andthepathfrom theroot to thenode.

Our encodingschemeexploits the low numericalvalue
of the edgeidentifiers,by only allocatingtwice the mini-
mumspacerequiredto storethenumbers.For example,as
thenumber”1” is representedby 1 bit, andthenumber”2”
by 2 bits, the path”1.1.2” is representedin only 8 bits (2� 4 bits). This approachoffers a greatspacesaving over
methodswhich typically usea 4 byte integer to represent
eachnode(thusrequiring12 bytesinsteadof 1 to represent
thepreviouspath).

It is now possibleto begin to seehow thedistancecalcu-
lationworks.As y / is encodedby ”1.1.2” and 01/ is encoded
by ”1.1.3”, thedistancebetweenthemcanbedeterminedby
observingthatthepathsarethesamefor thefirst two edges
(”1.1”), andso this contributesnothingto theshortestpath
betweenthem.This informationis foundusingasinglebit-
wise exclusive or operation. After the pathsdiverge, the
pathfrom the root to y / contains1 edge,asdoesthe path
from theroot to 0 / . This informationis foundusinga non-
iterative bit countingalgorithm.We canthusdeterminethe
distancebetweenthesetwo nodesis 2 in constanttime.

2.2. Representing Multiple Paths

The methoddescribedin section2.1 is extendedto repre-
sentgeneralsubgraphsin this section.Supposewe wantto
encodethe subgraphcontainingall pathsfrom the root to2 � . This must include not only the direct path to 2 � , but
thecycle from 2 � to itself. Obviously our methodof listing

edgessequentiallyis not sufficient whenmultiple pathsare
involved.

To dealwith multiple pathsin a subgraph,we number
nodeswhich containmorethan2 incomingor morethan2
outgoingedges,within a singlesubgraph.Notethatwe are
not concernedaboutthetotal numberof incomingandout-
going edgesfrom a node. We areonly concernedwith the
numberof incomingandoutgoingedgeswhichareincluded
in the subgraphof interest. This is illustratedin figure 1
by the nodeslabeled”A” and”B”. Note that even though
many nodesin thegraphhavemorethan2 incomingor out-
goingedges,within thesubgraphcontainingall pathsfrom
theroot to 2 � , thereareonly 2 suchnodes.

Suchnodes(referredto ascommon nodes) arenumbered
separatelyfrom the edgeidentifier numbering. In figure
1, the node 2 � is labeled”A” for clarity. In the encoding
schemeis implementedas the number”1” with a marker
bit setto indicatethis numberrefersto acommonnodeand
not an edgeidentifier. Commonnodesaregiven numbers
which areuniquewithin the subgraph being encoded. This
is generallysubstantiallysmallerthan the total numberof
suchnodeswithin the entiregraph. (Thus, for example,a
differentcommonnodemay alsobe identifiedas”A” in a
differentsubgraph).

The entireencodingfor the subgraphof all pathsfrom
theroot to 2 � is thereforegivenby:
1.2.3 A.A.1.1.3 B.2.1.3 B.B.1.3 A Given that each of
thesenumbersare representedin the minimum possible
space,theentiresubgraphis representedin only 48bits.

3. CONCLUSIONS

Thisextendedabstractsummarizedthemethodthatwepro-
posedfor implementinga fast, efficient proximity search
in near linear time. The encodingschemeis focusedon
compressingtheinformationasmuchaspossible,whilst at
thesametime facilitatingproximity determination.This is
aidedby the datastructurewe employ, which utilisesbit-
wise operationsand optimisationsto substantiallyreduce
thetime takenby thealgorithmin practice.

4. REFERENCES

[1] M. Barg, and R.K. Wong. StructuralProximity Searching
for Large Collectionsof Semi-StructuredData. Technical
Report,CSE,Universityof New SouthWales,2001.

[2] R. Goldman,N. Shivakumar, S. Venkatasubramanian,and
H. Garcia-Molina.Proximity Searchin Databases.In Inter-
national Conference on VLDB, 26–37,1998.

