

A Brief Introduction of the Web++ Framework

Bing Swen (Sun Bin)
Dept. of Computer Science Technology, Peking University, Beijing 100971, CHINA

bswen@cs.pku.edu.cn

Abstract: This paper presents an overview of the Web++ framework, a new mechanism of hypertext resource transmission specifically
designed to further improve Web performance. The major components of the framework are briefly described, along with some initial and
yet encouraging results from experimental implementation and test.
Keywords: World-Wide Web, HTTP, Performance, Hypertext, Resource transmission

1 Introduction

The simple idea − "batch-fetching" a web page and all of its related objects (such as images, scripts, applets, style sheets,
etc.) within a single request and response − is not new, and several previous proposals were made quite a few years ago, e.g.,
a primitive MGET method by Franks [2], or the GETALL and GETLIST methods by Padmanabhan and Mogul [3], and later
the “collection resource” of WebDAV [7], MHTML by Palme and Hopmann [5], and the recent “bundle” proposal by Wills
et al [1].

This paper presents an overview of the Web++ framework, yet another mechanism to transfer web resources in a batch
manner. The major difference between Web++ and the previous work may be that the former is a little bit more further to try
to provide a complete solution to the problem. The major insufficiency of the previous proposals seems to be in the difficulty
to handle various partial modifications of embedded objects. It would be exceedingly difficult (if not impossible) to design a
uniform and consistent scheme of aggregate resource updating without the help of an elaborate information description of
individual resources, and we are not aware of any other work that uses a special transfer encoding together with a transfer
control mechanism to speed up HTTP transactions.

Actually, the structural characteristics of “hypertexted Web pages” still provide a great potential for performance
improvement. This research is intended to explore such a possibility.

2 Web++ Overview

The framework of Web++ includes three components[8,9]:
- A new URL scheme sttp for identifying resources on the Web++, with the general format sttp: // host : port / path ?

parameters.
- The Structured Hypertext Transfer Protocol (STTP), defining a message set of requests and responses for the

transmission control of resources on the Web++.
- The Structured Hypertext Markup Language (STML), for describing the structural information of Web pages,

including information of the root page file, number and types of the linked objects, entity attributes of each object, file offsets
and sizes of partial update, etc.

Roughly speaking, an STML document is a "hypertext of hypertext", that is, a set of hypermedia objects that are related
to the same root hypertext. (The set may or may not be "closed" with respect to the closure of links.) Thus STTP may also be
called the protocol for the transmission of a set of hypertexts. Based on the detailed meta-information described in STML,
STTP can possibly transfer resources in an optimal way. Before sending a page file to the client, the server first processes the
page into a more compact format (structured hypertext) with its header containing sufficient meta-information of each
element related to the page, so that the client can handle them directly, without any repeated network transmission. On the
other hand, the client also presents sufficient meta-information about its desired objects to the server for optimization of the
delivery. Such processing of Web page allows the server and client to have a good knowledge of the contents that are
transmitted, and helps make a more efficient use of TCP connection.

Using such description, typical STTP Transactions can be performed within one request and one reply. E.g., when a
client is to retrieve a Web page that is not locally cached, it tries to get the page by sending a single selective S-GET request,
expecting a single response from the server with the message body being a full STML document generated for the page. If
the page is already cached, then the client generates a partial STML document (head-part) listing the meta-information of all
the interesting objects related to the page (including the root page itself) obtained since the last visit, and send
an S-COMPARE request, expecting a single response with an STML document containing all the necessary information of
update for modified objects. This would provide the most efficient Web page retrieval model. For a typical Web page with 10
linked objects, there are at least 11 requests and 11 responses (totally 22 messages) needed to transmit between an HTTP
client and server (together with mutual acknowledgement for each packet). Though the HTTP/1.1 request pipelining method
usually helps reduce the latency, this model is far from optimization in terms of message number and usage of packets. STTP
reduces the network traffic by greatly reducing the number of client requests and keeping most of the packets in full size.

Using a new header field of redirection (Followed-By), the S-POST process, counterpart of HTTP POST, can also be
performed within two messages.

Here is a brief example of Web page revisiting (For more details, see [8,9]):
S-COMPARE /index.html STTP/1.0
Host: wpp.org.cn
Linked-Object: -text/html -text/xml +image/* local-only
ETag: 0-85f-724334c4 // ETag of the original STML document

[head]
[root Name= "/index.html" Content-Type="text/html" Offset-Size="502/27371" ETag= "0-54e-383712c4" Linked-Object="-text/html, +*/*"]
[object Name="/logo.jpg" Content-Type="image/*" Offset-Size="27960/66808" ETag= "0-23f-626854c4" /]
[object Name= "/menu.js" Content-Type="text/*" Offset-Size="94920/8033" ETag="0-31d-652413c4" /]
[/root]
[/head]

With the combination of the STML Offset-Size attribute and the HTTP Content-Range header, partial update of a single
object can be efficiently realized in STTP. E.g., in a Web page (or non-root object) there are two parts (marked between
specific tokens) corresponding to dynamic contents,

………<%!?# … #?!%> ………<%!?# … #?!%> ………
0 r1 r2 r3 r4 r5

When constructing a response for this page, the server may indicate that the page has two parts that are dynamic using a ‘+’
indicator at the corresponding offset/size values,

[object …… ETag = "0-54e-383712c4" Content-Range="0-r1/*, r1-r2/*, r2-r3/*, r3-r4/*, r4-r5/*" Offset-Size="o1/s1,+o2/s2,
o3/s3, +o4/s4, o5/s5" … /]

Then when revisiting the page, the client issues an S-COMPARE request with the information
[object …… ETag = "0-54e-383712c4" Range="r1-r2/*, r3-r4/*" …]

The server may then send only the dynamic contents for update. In partial update messages, the server should treat the entity
tags of dynamic pages as weak validators [6], which are not affected by dynamic contents.

3 Web Compatibility

STTP is fully compatible with HTTP/1.x. STTP retains all HTTP requests and responses while supporting new
messages, so that STTP clients and servers can recognize all HTTP messages. This means HTTP is a strict subset of STTP,
such that HTTP and STTP clients/servers can coexist and communicate with each other. For example, using the following
URLs, sttp://wpp.org.cn/, and http://wpp.org.cn/, the client should present exactly the same content to the user.

An STTP client may first use the sttp:// scheme to retrieve resources on a server. If the server returns status code
indicating HTTP client error, then it should be regarded as an HTTP server and the client may then try the http:// scheme. On
the other hand, an STTP server can easily differentiate between HTTP and STTP clients from the version field of the request
line, in addition to the methods used.

4 Experimental Implementation and Tests

To validate the effect of our mechanism, we made an experimental implementation to compare the elapsed time in
transmission of an identical set of Web pages using HTTP/1.1 and STTP/STML. The test set consists of 20 different HTML
files, containing 2, 4, 6, …, 40 linked images respectively. The files also include a paragraph of the same text, amounting to
1876 characters. The images are saved using different file names from the same JPEG file, which has 2471 bytes. The page
with 40 images is also used to test the caching based retrieval with 0, 2, 4, …, 40 images locally cached.

The network environments tested include two typical connection conditions: a fast intranet and a slow dialup line. The
intranet is a 100Mbps Ethernet LAN, with RTT < 1ms and MSS = 1460. The dialup line is a 48Kpbs PPP modem line using a
major public commercial dialup service, with RTT ≈ 220ms and MSS = 1460. On the intranet, there is one router hop
between the server and the client, while on the modem line there are 8. In order to make up for network fluctuations, the tests
were made after midnight at several weekends and most runs were repeated more than 10 times.

The performance tests of elapsed time and packet number and the results are listed in appendix. The results show that
STTP outperformed HTTP under all circumstances tested. For the first time retrieval, the improvement is around 70% on the
LAN and 25% on modem line. For 50% update retrieval, the improvement are 170% and 60% respectively. STTP is superior
to HTTP for revalidate tests, usually of an order of magnitude. This is some what significant, since the bulk resources on Web
servers remain to be stable [Arlitt&Williamson96], and even on some highly dynamic web sites files tend to change little when
they are modified and the variation ratio is often extremely small [4]. The savings in terms of number of packets are of the
same magnitude.

STTP also shows the desired scalability, that is, the faster the connection, the better it performed. Connection conditions
are constantly improved, from which STTP could benefit more than HTTP.

The major shortcoming is that STML encoding, decoding and cache synchronization bring additional load for both the
server and client. Using a few specific caching methods, a significant part of the load can be optimized away [9]. The cost is
low on both the server and the client sides comparing to the improvement. And such load tends to be a smaller and smaller
part as computer hardware technology is rapidly progressing, which is much faster than the improvement of the limits of
communication connections. We may regard the Web++ framework as a load balance mechanism between the
communication hosts and connections.

References
[1] Craig E. Wills, Mikhail Mikhailov, Hao Shang, “N for the Price of 1: Bundling Web Objects for More Efficient Content Delivery”. In

Proceedings of WWW10 (10th International World Wide Web Conference), May 1-5, 2001, Hong Kong (http://www10.org).
[2] Franks, John. MGET proposal, October 1994, http://www.ics.uci.edu/pub/ietf/http/hypermail/1994q4/0260.html
[3] Padmanabhan, Venkata N., and Jeffrey C. Mogul. “Improving HTTP Latency”, Computer Networks and ISDN Systems, v. 28, pp.

25-35, Dec. 1995. Slightly revised version of paper in Proc. 2nd International WWW Conference '94: Mosaic and the Web, Oct. 1994,
which is available at http://www.ncsa.uiuc.edu/SDG/IT94/Proceedings/DDay/mogul/HTTPLatency.html.

[4] Padmanabhan, Venkata N., and Lili Qiu, “The Content and Access Dynamics of a Busy Web Site: Findings and Implications”,
Proceedings of ACM SIGCOMM 2000.

[5] Palme, J., and A. Hopmann, “MIME E-mail Encapsulation of Aggregate Documents, such as HTML (MHTML),” RFC 2557, March
1999.

[6] R. Fielding, J. Gettys, J. C. Mogul, H. Frystyk, L. Masinter, P. Leach and T. Berners-Lee. “Hypertext Transfer Protocol - HTTP/1.1”,
RFC 2616. June 1999.

[7] Stracke, J., “Encoding a DAV resource in MIME” (draft-stracke-webdav-mime-resource-00.txt), Feb. 1999. Internet Draft, IETF.
[8] Swen, Bing. An Overview of the Web++ Framework. In Proceedings of International Conferences on Info-tech & Info-net (ICII2001),

Conference E (Information Network). Beijing, Oct.29 - Nov.1, 2001.
[9] Swen, Bing. Improving Web Performance Using Structural Information of Web Pages, Tech. Rept., ICL, CS Dept., Peking University,

Jan. 2001. (Available at http://icl.pku.edu.cn/bswen/web++/w++intro.html)

Appendix: STTP and HTTP Performance Comparison Tests

Table 1 and 2 are the results of three different tests, that is, the packet number and elapsed time for first-time retrieval,

50% update (half of the linked images cached) and reload. Reload or revalidate is revisiting a Web page where the contents
are already available in a local cache. In our cases, revalidate of a cached page results in no actual resource transfer.

Table 1 Performance Comparison on a 100Mbps LAN
first-time retr. (packets/sec.) 50% update (packets/sec.) reload (packets/sec.) linked

objects HTTP STTP PR AR HTTP STTP PR AR HTTP STTP PR AR
 2
 4
 6
 8
10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40

12
20
28
36
45
53
61
69
77
85
93

101
113
117
125
133
143
151
159
167

0.121
0.162
0.204
0.235
0.471
0.541
0.727
0.846
0.929
1.160
1.337
1.472
1.627
1.753
1.933
2.143
2.243
2.414
2.553
2.639

9
14
21
25
30
35
40
45
51
56
60
65
69
76
80
86
90
94
99

104

0.105
0.124
0.162
0.187
0.215
0.260
0.351
0.441
0.494
0.641
0.726
0.818
0.891
0.974
1.087
1.167
1.307
1.392
1.583
1.667

0.33
0.43
0.33
0.44
0.50
0.51
0.53
0.53
0.51
0.52
0.55
0.55
0.64
0.54
0.56
0.55
0.59
0.61
0.61
0.61

0.15
0.31
0.26
0.26
1.19
1.08
1.07
0.92
0.88
0.81
0.84
0.80
0.83
0.80
0.78
0.84
0.72
0.73
0.61
0.58

11
16
23
28
35
41
47
53
59
65
71
77
83
89
95
101
109
115
121
127

0.060
0.087
0.128
0.143
0.196
0.292
0.390
0.535
0.634
0.751
0.863
0.968
1.099
1.207
1.302
1.422
1.556
1.652
1.767
1.873

7
9
12
16
18
21
23
25
28
30
33
36
39
42
43
46
49
51
54
58

0.051
0.070
0.095
0.121
0.146
0.176
0.192
0.208
0.218
0.232
0.245
0.274
0.342
0.389
0.451
0.521
0.550
0.561
0.580
0.661

0.57
0.78
0.92
0.75
0.94
0.95
1.04
1.12
1.11
1.17
1.15
1.14
1.13
1.12
1.21
1.20
1.22
1.25
1.24
1.19

0.18
0.24
0.35
0.18
0.34
0.66
1.03
1.57
1.91
2.24
2.52
2.53
2.21
2.10
1.89
1.73
1.83
1.94
2.05
1.83

8
12
16
20
24
28
32
36
40
44
48
52
56
60
64
68
72
76
80
84

0.040
0.059
0.073
0.089
0.110
0.125
0.133
0.173
0.250
0.305
0.406
0.481
0.561
0.621
0.721
0.761
0.788
0.809
0.831
0.876

3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3

0.035
0.035
0.035
0.035
0.035
0.035
0.035
0.035
0.035
0.035
0.035
0.035
0.035
0.035
0.035
0.035
0.035
0.035
0.035
0.035

1.67
3.00
4.33
5.67
7.00
8.33
9.67
11.00
12.33
13.67
15.00
16.33
17.67
19.00
20.33
21.67
23.00
24.33
25.67
27.00

0.14
0.69
1.09
1.54
2.14
2.57
2.80
3.94
6.14
7.71
10.60
12.74
15.02
16.74
19.60
20.74
21.51
22.11
22.74
24.03

Total 1788 25.492 1149 14.592 0.56 0.75 1366 16.925 640 6.083 1.13 1.78 920 8.212 60 0.700 14.33 10.73

Table 2 Performance Comparison on a 48Kbps Modem Line

first-time retr. (packets/sec.) 50% update (packets/sec.) reload (packets/sec.) linked
objects HTTP STTP PR AR HTTP STTP PR AR HTTP STTP PR AR

 2
 4
 6
 8
10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40

16
26
35
42
50
59
70
76
83
94
102
106
111
122
131
143
152
161
175
183

1.87
2.86
4.28
5.38
6.38
7.36
8.02
10.16
11.42
12.47
13.07
13.73
15.16
16.94
17.72
19.28
19.91
22.16
22.96
23.67

11
17
24
30
36
42
49
59
62
68
74
80
87
93
99

106
112
124
128
131

1.37
2.36
3.24
4.17
4.94
5.83
6.59
8.18
8.67

10.17
10.43
11.32
12.14
12.64
13.70
14.61
15.60
16.48
18.13
19.77

0.45
0.53
0.46
0.40
0.39
0.40
0.43
0.29
0.34
0.38
0.38
0.33
0.28
0.31
0.32
0.35
0.36
0.30
0.37
0.40

0.36
0.21
0.32
0.29
0.29
0.26
0.22
0.24
0.32
0.23
0.25
0.21
0.25
0.34
0.29
0.32
0.28
0.34
0.27
0.20

12
20
26
33
38
46
53
58
63
70
73
80
87
93
101
105
111
119
126
132

1.24
1.96
2.52
3.68
3.95
4.68
5.27
6.53
7.47
8.30
8.84
9.06
10.06
10.36
10.71
11.09
12.91
13.95
15.79
16.48

8
11
14
18
21
24
27
30
34
37
40
44
47
50
53
56
60
63
66
70

0.76
1.43
1.98
2.31
2.69
3.18
3.63
4.12
4.62
5.00
5.44
5.77
6.10
6.26
6.49
7.75
8.24
8.62
9.07
9.39

0.50
0.82
0.86
0.83
0.81
0.92
0.96
0.93
0.85
0.89
0.83
0.82
0.85
0.86
0.91
0.88
0.85
0.89
0.91
0.89

0.63
0.37
0.27
0.59
0.47
0.47
0.45
0.58
0.62
0.66
0.63
0.57
0.65
0.65
0.65
0.43
0.57
0.62
0.74
0.76

8
12
16
20
24
28
32
36
40
44
48
52
56
60
64
68
72
76
80
84

0.55
0.74
0.99
1.21
1.43
1.45
1.87
2.14
2.30
2.53
2.75
2.91
3.18
3.41
3.62
4.06
4.12
4.37
4.47
4.56

3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3

0.22
0.22
0.22
0.22
0.22
0.22
0.22
0.22
0.22
0.22
0.22
0.22
0.22
0.22
0.22
0.22
0.22
0.22
0.22
0.22

1.67
3.00
4.33
5.67
7.00
8.33
9.67
11.00
12.33
13.67
15.00
16.33
17.67
19.00
20.33
21.67
23.00
24.33
25.67
27.00

1.50
2.36
3.50
4.50
5.50
5.59
7.50
8.73
9.45
10.50
11.50
12.23
13.45
14.50
15.45
17.45
17.73
18.86
19.32
19.73

Total 1937 254.80 1431 200.34 0.35 0.27 1446 164.85 773 102.85 0.87 0.60 920 52.66 60 6.60 14.33 6.98
Note:

packet saving ratio PR = (packet-noHTTP – packet-noSTTP) / packet-noSTTP
acceleration ratio AR = (timeHTTP – timeSTTP) / timeSTTP

Table 3 and 4 are the comparison of transmission time and packet numbers of a page with 40 linked objects and

different numbers of objects being cached (the page is not cached). Again, STTP needs only one request for the revalidate of
all the cached images and the retrieval of other files. The packets transmitted were solely used for resources transmission. All
response packets (except for the last one) were in the full size.

Table 3 100Mbps LAN
update reload (packets/sec.) cached

objects HTTP STTP PR AR
 0
 2
 4
 6
 8
10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40

167
163
159
155
151
147
143
139
135
131
127
123
119
115
111
107
103
99
95
91
87

2.078
2.043
2.013
1.963
1.913
1.873
1.783
1.722
1.662
1.598
1.528
1.462
1.392
1.342
1.272
1.226
1.167
1.061
1.042
0.982
0.921

112
105
102
96
91
86
82
78
69
65
61
54
49
45
39
33
28
22
18
12
7

1.702
1.508
1.367
1.262
1.251
1.072
1.031
0.992
0.911
0.762
0.711
0.601
0.471
0.436
0.330
0.261
0.231
0.200
0.170
0.150
0.055

0.49
0.55
0.56
0.61
0.64
0.71
0.74
0.78
0.96
1.02
1.08
1.27
1.43
1.56
1.85
2.24
2.68
3.50
4.28
6.58
11.43

0.22
0.35
0.47
0.56
0.53
0.75
0.73
0.74
0.82
1.10
1.10
1.43
1.96
2.08
2.85
3.70
4.05
4.31
5.13
5.55
15.75

Table 4 48Kbps Modem Line

update reload (packets/sec.) cached
objects HTTP STTP PR AR

 0
 2
 4
 6
 8
10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40

201
198
195
187
181
177
173
166
163
161
155
151
147
142
139
136
131
128
122
110
91

21.70
21.42
21.26
21.20
20.87
20.57
18.43
17.94
17.26
16.17
14.75
13.82
13.32
12.30
12.09
11.65
10.27
9.73
8.77
7.01
4.21

140
133
130
123
114
106
100
94
87
80
74
67
61
54
46
40
34
26
20
13
7

21.04
19.36
19.14
18.07
17.17
16.43
15.19
14.28
12.93
12.02
10.93
9.83
9.04
7.91
7.17
5.66
4.64
3.68
2.61
1.73
0.60

0.44
0.49
0.50
0.52
0.58
0.67
0.73
0.77
0.87
1.01
1.09
1.25
1.41
1.63
2.02
2.40
2.85
3.92
5.10
7.46
12.00

0.03
0.11
0.11
0.17
0.22
0.25
0.21
0.26
0.33
0.35
0.35
0.41
0.47
0.55
0.69
1.06
1.21
1.64
2.36
3.05
6.02

