
A Constraint Extension to Scalable Vector Graphics
Greg J. Badros1 Jojada J. Tirtowidjojo2 Kim Marriott2 Bernd Meyer2

Will Portnoy3 Alan Borning3

1InfoSpace, Inc., 2801 Alaskan Way, Suite 200 Seattle, WA 98121, USA
greg.badros@infospace.com

2School of Computer Science and Software Engineering, Monash University, Clayton, Victoria 3168, Australia
fjojada, marriott, berndmg@mail.csse.monash.edu.au

3Dept. of Computer Science and Engineering, University of Washington, Box 352350, Seattle, WA 98195-2350, USA
fwill,borningg@cs.washington.edu

Abstract
Scalable Vector Graphics (SVG) is a language that describes
two-dimensional vector graphics for storage and distribution
on the Web. Unlike raster image formats, SVG-based im-
ages scale nicely to arbitrary resolutions and sizes. However,
the current SVG standard provides little flexibility for tak-
ing into account varying viewing conditions, such as differ-
ent screen formats, and there is little support for interactive
exploration of a diagram. We introduce an extension to SVG
called Constraint Scalable Vector Graphics (CSVG) that per-
mits a more flexible description of figures. With CSVG, an
image can contain objects whose positions and other proper-
ties are specified in relation to other objects using constraints,
rather than being specified in absolute terms. For example, a
box can be specified to remain inside another box, without be-
ing given an absolute position. The precise layout can then be
left to the browser, which can adapt it dynamically to changing
viewing conditions on the client side. Further extensions add
support for alternate layouts, interaction, and declarative ani-
mation. Leveraging well-established methods for linear con-
straint solving, we implemented a prototype viewer for CSVG
by embedding our Cassowary constraint solver into an existing
SVG renderer.
Keywords: constraints, differential scaling, semantic zoom-
ing, interaction, CSVG, SVG, Scalable Vector Graphics.

1. INTRODUCTION
The Scalable Vector Graphics (SVG) language [16] is a lan-

guage based on XML [11] developed by the World Wide Web
Consortium for describing two dimensional vector graphics
for storage and distribution on the Web. SVG can dramatically
improve graphics on the Web. In contrast to raster image for-

Copyright is held by the author/owner.
WWW10, May 1-5, 2001, Hong Kong.
ACM 1-58113-348-0/01/0005.

mats such as GIF, JPEG, and PNG, which store a matrix of in-
dividual pixels that compose an image, an SVG image contains
instructions for resolution independent rendering, so that the
same SVG file can be shown in more detail when viewed at a
higher resolution. SVG files are also more compact than raster
images, easier to process and analyze, integrate well with Cas-
cading Style Sheets (CSS) [10] and can make full use of the
Document Object Model (DOM) [2]. Given these advantages,
SVG is increasingly well supported by both commercial and
free software.

1.1 SVG is not enough
Although the SVG format is a huge step forward for many

kinds of images, we can do even better for diagrammatic il-
lustrations. In particular, SVG does not provide for flexible
layout given different viewer requirements and browser capa-
bilities, such as screen format and font preferences. Moreover,
the support for interaction and animation in SVG is very lim-
ited. In this paper we demonstrate how extending SVG with
constraints provides the basis for improving these aspects, thus
significantly enhancing the flexibility of SVG. This is a mod-
ular extension to SVG that ensures upward compatibility with
the original format.

A constraint is a declarative specification of a re-
lationship that we wish to hold true. For example,
“Format appears to the left of DateFormat” is a con-
straint. We can write the constraint mathematically as:
Format:xright + horiz spacing � DateFormat:xleft. In this
constraint, we only specify the properties we wish to hold,
but do not give concrete values, or an explicit method (an
algorithm) for making the properties hold. The task of finding
appropriate values is delegated to a constraint solver that is
used during rendering.

For example, assume that we want to display a part of the
Java object hierarchy (Figure 1), but we want different lay-
outs to be used in different viewing conditions so as to convey
the information as clearly as possible. In a landscape format,
we may want to use a diagram such as Figure 2, whereas a
portrait format would be better served by the layout of Fig-
ure 3. Although these diagrams look very different, they have
the same logical (topological) structure and semantics. Using
SVG alone for this purpose presents a problem, because we
are required to give absolute positions and sizes for the graph-

489

Figure 1: SVG image diagramming the object hierarchy
for the Java.Text.Format class. The SVG source for this
image appears in Figure 5.

Figure 2: CSVG rendering of the Format class hierarchy
inside a wide and short viewport.

ics objects. The only flexibility that SVG allows is uniform
scaling of the entire graphic.

Another limitation of SVG is that it provides little direct
support for interactive exploration of a diagram. In particu-
lar, the static nature of SVG forces authors to write scripts if
they wish to maintain the layout relationships of objects in the
diagram automatically, for example, when an object in the di-
agram is manipulated interactively. This task is tedious, com-
plicated, and tightly coupled to the specific illustration. The
new layout ideally should be generated automatically by the
browser based on a more abstract layout specification.

Figure 3: CSVG rendering of the Format class hierarchy
inside a narrow and tall viewport.

1.2 Interactive manipulation & animation
As another example, consider the Local Area Network

(LAN) topology diagrams shown in Figure 4. The network,
shown in Figure 4(a), connects three different buildings —
A, B, and C — via a site-wide backbone. Shrinking the
whole diagram uniformly may cause buildings A, B, and
C to become too small to display their internal details. By
using an alternative presentation for each of the buildings we
can support a more powerful form of resizing. Figure 4(b)
shows a possible result. Zooming that preserves the semantic
presentation of the LAN topology diagram but changes its
appearance is called semantic zooming.

Semantic zooming in combination with user interaction can
allow viewers to explore a diagram interactively, selecting sub-
components they wish to see in detail and hiding the details
of other sub-components. Of course the diagram layout must
change dynamically, preserving connections and also effec-
tively utilizing the available screen space.

We would also like SVG to provide a form of zooming that
we term differential scaling. (Both semantic zooming and dif-
ferential scaling are kinds of focus+context techniques [31].)
In contrast to uniform scaling, differential scaling enables us to
enlarge a part of a diagram to see more detail, while simultane-
ously shrinking another part, so that the overall screen area for
the diagram is kept constant. This capability clearly involves
scaling various parts of the figure differently. An important
application of this non-uniform scaling is to the sizing of text
in diagrams. A sight-impaired user, for instance, may want
to shrink the overall size but to increase text font size in la-
bels. As an example, see Figure 4(c), which contains the same
graphical components as Figure 4(a) but with an increased text
size for labels and smaller boxes. Note that this means differ-
ent line breaking for the text in the labels.

We would also like viewers to be able to change the lay-
out of objects in the diagram interactively, without changing
its semantic content or logical structure. Users should thus be
restricted to performing semantics preserving manipulations.
For example, Figure 4(d) shows a resized and rearranged di-
agram of the local area network example. Here, the system
preserves the connection information when the user extends
the width of building C’s bounding rectangle and interactively
moves the LAN segment boxes as well as the repeater circle.

The idea of interactive manipulation and exploration of a
diagram naturally generalizes to an interaction metaphor in
which the viewer uses the diagram as a simulation of some
physical artifact and can explore “what-if” scenarios by direct
manipulation and other interaction, as in the original ThingLab
system [6]. In section 3.2, we discuss an interactive abacus.

The same principle can be further generalized to provide
constraint-based animation [14]. In addition to making the
properties of some graphical objects dependent on the prop-
erties of other objects, and allowing the user to manipulate
these properties interactively, we can also make these prop-
erties dependent on a timer variable. Using a constraint that
relates object properties to a time offset gives us an immediate
way to specify trajectories and other animation properties. In
section 3.3, we discuss a seesaw animation.

1.3 Extending SVG
The above examples demonstrate how semantic zooming,

differential scaling, semantics preserving manipulation, and

490

Building A

LAN
Segment

LAN
Segment

LAN
Segment

Multiport
Bridge

Building C

R

Bridge

LAN Segment

LAN Segment

Building B

R

LAN
Segment

Bridge

R

LAN Segment

LAN Segment

R= Repeater

Site-wide Backbone

ATM
Switch 2

ATM
Switch 1

ATM
Switch 3

ATM
Switch 4

Line12 Line23

Line14 Line34

(a) Site-wide Backbone

ATM

Switch

4

ATM

Switch

1

ATM

Switch

3

ATM

Switch

2

Line12 Line23

Line34Line14

Building C

Building B

Building A

(b)

Building C

LAN
Segment

R

LAN
Segment

Bridge

Building B

Bridge

LAN
Segment R

LAN
Segment

R
LAN

Segment

Site-wide
Backbone

ATM
Switch

4

Line14

ATM
Switch

1

Line12

ATM
Switch

2

Line23

ATM
Switch

3

Line34

R= Repeater

Building A

LAN Segment

LAN
Segment

Multiport
Bridge

LAN Segment

(c)

Building C

R

Bridge

LAN Segment LAN Segment

Building A

LAN
Segment

LAN
Segment

LAN
Segment

Multiport
Bridge

Building B

R

LAN
Segment

Bridge

R

LAN Segment

LAN Segment

R= Repeater

Site-wide Backbone

ATM
Switch 2

ATM
Switch 1

ATM
Switch 3

ATM
Switch 4

Line12 Line23

Line14 Line34

(d)
Figure 4: Various diagrams of a local area network. Relative to diagram (a), (b) illustrates semantic zooning, (c) demon-
strates differential scaling, and (d) is an example of the output of a semantics-preserving transformation.

491

animation greatly improve SVG’s value. We shall show that
constraint-based layout specification of SVG elements can be
used as the basis for such dynamic layout and provide SVG
with the desired capabilities. These constraint-based layout
specifications are more abstract and flexible specifications of
layout. In our Constraint Scalable Vector Graphics (CSVG)
extension to Scalable Vector Graphics, images can use ar-
bitrary linear arithmetic constraints to control the layout of
shapes, lines, paths, and font sizes.

The other primary additional capability provided by CSVG
is allowing alternate layouts for the same logical group of com-
ponents in a diagram. Which layout is chosen depends on test-
ing preconditions at runtime, such as display window size or
aspect ratio. The layout may also be chosen interactively by
the user, allowing exploration of the diagram.

Our main technical contributions are:

� a motivation for using constraints and alternative layouts
for a wide class of SVG diagrams;

� a description of Constraint Scalable Vector Graphics as
an extension of SVG; and

� a prototype implementation of a CSVG viewer based on
the CSIRO SVG viewer [32]. The prototype makes use
of the sophisticated constraint solving algorithm Casso-
wary [9].

2. SVG BACKGROUND
In spirit, the Scalable Vector Graphics format is very simi-

lar to the PostScript page description language [1], but it uses
XML syntax instead of postfix notation. Figure 5 gives an ex-
ample.

In SVG, each element describes a shape to be rendered. For
example:

<rect x="20" y="10"
width="10" height="5"/>

describes a rectangle whose top-left corner is positioned at co-
ordinate (20,10) with a width of 10 units and a height of 5
units. Lengths and coordinates can include explicit units, but
when they are omitted, the user space coordinate system is
used [16, Ch.7].

An especially powerful SVG element is path. Its d (for
“data”) attribute contains a string that encodes a command-
based description of an arbitrary outline. For example, the
element:

<path d="M 20 10 L 30 10 L
30 15 L 20 15 Z"/>

describes a rectangle path equivalent to the preceding rect
element: first Move to (20, 10), then draw Lines to (30,10),
(30,15), and (20,15), and finally close the path (Z). Uppercase
command characters designate the use of absolute coordinates,
while lowercase denotes relative coordinates. Other path
sub-language commands include Curve-to, Smooth curve-to,
Quadratic Bezier curve-to, and more.

Other important elements include defs and use for defin-
ing objects and later referencing them, image for embedding

<?xml version="1.0"?>
<!DOCTYPE svg SYSTEM "svg.dtd">
<svg
width="4.5in" height="4in"
viewBox="0 0 100 100"
style="fill: none; font-size: 15;

stroke-width: 1; stroke: black;
text-anchor: middle">

<desc>The object hierarchy surrounding
the class "Java.text.Format"</desc>

<text x="200" y="30">Object</text>
<text x="200" y="90">Format</text>
<text x="60" y="150">DateFormat</text>
<text x="60" y="210">SimpleDateFormat</text>
<text x="200" y="150">MessageFormat</text>
<text x="380" y="150">NumberFormat</text>
<text x="310" y="210">DecimalFormat</text>
<text x="450" y="210">ChoiceFormat</text>
<line x1="200" y1="32" x2="201" y2="75"/>
<line x1="200" y1="92" x2="60" y2="135"/>
<line x1="200" y1="92" x2="201" y2="135"/>
<line x1="200" y1="92" x2="380" y2="135"/>
<line x1="60" y1="152" x2="61" y2="195"/>
<line x1="380" y1="152" x2="310" y2="195"/>
<line x1="380" y1="152" x2="450" y2="195"/>
</svg>

Figure 5: SVG source of the class hierarchy illustration
shown in Figure 1.

raster image files (e.g., PNG or JPEG graphics), text for in-
cluding text, and g for grouping sub-elements to be rendered
as a single entity.

The g element (as well as the basic shape elements) has an
attribute transform whose value is a list of translating, scal-
ing, rotating, or skewing transformations that will be applied
to the grouped shape before final rendering. One of the more
complex features of SVG is that objects may be positioned and
dimensioned relative to a transformation frame or in absolute
units.

SVG also contains several animation elements that describe
time-based perturbation of the containing object. These ele-
ments can be used to achieve motion along paths, the fading in
or out of objects, changes in color, and more. For example, to
animate moving a rectangle horizontally across the viewport
to the right, we write:

<rect x="20" y="10"
width="10" height="5"/>

<animate attributeName="x"
attributeType="XML"
begin="0s" dur="9s"
fill="freeze"
from="20" to="120"/>

</rect>

A program that reads an SVG file has access to the inter-
nals of the image via the SVG Document Object Model [16,
Appendix B]. The DOM [2] permits direct access to the SVG
element tree in an object-oriented manner and allows the ma-

492

nipulation of element structures and attributes. For example,
to increase the size of a text element, we can execute the fol-
lowing code in ECMAScript [15], a standardized version of
JavaScript:

e = document.getElementById("TextElement");
e.setAttribute("transform", "scale(2)");

and the selected element will be scaled to twice its normal size.
The SVG DOM can be used in combination with scripting and
event handlers (e.g., mousedown, onclick) to permit some
useful interactive capabilities.

3. CSVG: CONSTRAINT SCALABLE
VECTOR GRAPHICS

The conventional means of delivering an image across the
Internet is in a rasterized image format such as PNG or JPEG
(Figure 6). The resolution is fixed when that file is created,
and the artifact the user receives is inflexible. The adoption
of the SVG image format permits a different delivery mecha-
nism (Figure 7). The high-level image description is stored in
the SVG image format, preserving much of the semantic value
provided by the author. That SVG file is then sent across the
network. An SVG renderer on the client side chooses the res-
olution and creates a rasterized display of that image specially
tuned for the display device and the desired size.

The key observation concerning the evolution from raster
images to SVG is that we are sending a higher-level descrip-
tion across the network and moving some of the processing
of the image from the server side to the client side. Thus,
the artifact sent across the Internet is more flexible—it can be
used as the source for generating a high-quality printout of the
image, to create a low-resolution thumbnail of the image, or
even to “render” the image aurally using speech synthesis to
describe the diagram. The decision of how to present the im-
age is made with input from the user, and from the browser
and other client-side software. Style sheets provide yet an-
other way to increase the flexibility of the image sent over the
network: not only is the resolution left undetermined, but the
final decision as to such aspects as the coloring scheme can be
delayed until after applying style sheet declarations.

Our constraint extension to SVG permits describing the au-
thor’s layout intentions, and defers the actual positioning and
sizing of the image’s elements until just before final display
for the user (Figure 8). To support this greater flexibility, we
have made four extensions to the SVG language.

First, we store all SVG standard element attributes in prede-
fined constraint variables and support identifier names in ad-
dition to literal numbers. These identifiers may refer to other
constraint variables in the document. For example, the rect
SVG element:

<rect id="rectA" x="10" y="20"
width="square_edge"
height="square_edge"
rx="5" ry="5"/>

will have six predefined variables based on its id at-
tribute: rectA x, rectA y, rectA width, rectA height,
rectA rx, and rectA ry; one for each attribute value.
Because identifiers are found in its attributes, this rectA

will have both rectA width and rectA height variables
constrained to be equal to the square edge variable.

Constraint variables may also be declared explicitly by us-
ing a new var element, in which case they have as optional
attributes a stay weight, sw, an edit weight, ew and a pre-
ferred value, value. The stay weight indicates the “inertia” of
the variable—how strongly it likes to keep its current value—
while the edit weight indicates how important it is to change
this variable during interaction when it is directly manipulated.
Although numeric values can be used for weights, it is usual
to use symbolic names such as strong and weak.

An important use of stay weights is to enforce stability in
graphical layout. Every constrained attribute implicitly has
a weak stay constraint which states that its value only be
changed as little as possible. Such stay constraints make ob-
jects remain in place unless some other stronger desire forces
a change.

Second, we add another new element type called con-
straint. Each constraint element has a required attribute,
rule, and an optional attribute, strength and specifies an
equation or inequality that we wish to hold for constraint vari-
ables. An example of such a CSVG constraint and its related
object tag is:

<constraint rule="square_edge >= 50"
strength="strong"/>

<rect x="10" y="20" width="square_edge"
height="square_edge"/>

which defines a square whose edge length is at least 50.1

The rule implicitly introduces the new constraint variable,
square edge.

Constraint strengths allow the designer to specify a relative
ordering of the importance of constraints. If there is a con-
flict, the stronger constraints will be given preference. There
are different ways to resolve conflicts among constraints with
the same strength [7]; in our implementation we minimize the
weighted sum of their errors.

Given a system of constraints, the constraint solver must
find an assignment to the variables that satisfies the required
constraints exactly, and the solution should satisfy the pre-
ferred constraints as well as possible, giving priority to the
more strongly preferred constraints and taking into account
edit and stay weights.

Third, we add several built-in read-only constraint
variables. (A read-only variable is one that cannot be
changed by the solver to satisfy the constraint in which it
occurs [7].) Two variables, viewport width and view-
port height, are used to allow the image to be influenced
by the size of the display area. We expose current time

and current time squared which are both ever-increasing
read-only variables that allow CSVG to support the declarative
specification of time-based animations more directly than the
animate elements.

Fourth, we have added alternate layouts for groups of SVG
elements. For this purpose a new docase element containing

1Our syntax was chosen for simplicity and conciseness. We
also considered using MathML [23] syntax for constraint spec-
ification: it has the advantage that standard XML parsers can
parse the constraint properly, but is considerably more verbose
and complicated.

493

������

��	�
��
��
���	�

�����������

��������
����������	�

������

����������
������� ��
���	�

!���

��"���������������

�"���������
������������

�����#��
�
�
�$

�
�%
��
�
�
�
�
�
��
�
�

&�
��
�
�
��
�
$
�#
�
�
�
$
��
��
'

(��
��
����

)�����
����

Figure 6: Conventional process of delivering a raster image
across the network.

������

��	�
��
��
���	�

�����������

�
�
�$

�
�%
��
�
�
�
�
�
��
�
�

&�
��
�
�
��
�
$
�#
�
�
�
$
��
��
'

����������
������� ��
���	�

!���

(*�
���	�
������

(*�
��������

�
��
��
��
�
�

��
�
�
��
��
�
�

��"���������������

(��
��
����

)�����
����

Figure 7: Process of delivering a resolution-independent
SVG image across the network.

one or more gcase element(s) is defined. Each gcase ele-
ment specifies an alternative version, with the version chosen
depending on which pre-condition holds. The gcase element
simply extends the SVG g element with a case attribute.

As an example, consider Building C of the LAN diagram
in Figure 4. The Bridge rectangle needs to have two different
connecting points for its connection line. In the initial con-
dition shown in Figure 4(a), where the Bridge does not com-
pletely stay to the left of the LAN segments, its connecting
point is on top edge. In other condition such as shown in Fig-
ure 4(d) the connecting point is on right edge. Clearly, the
Bridge needs alternate layouts. By using a docase element,
the alternative layouts can be expressed as follows:

<!-- Connection to BridgeC -->
<constraint rule="connectionLine_x1 =

To_BridgeC_x1"/>
<constraint rule="connectionLine_y1 =

To_BridgeC_y1"/>

<docase id="caseBridgeC">
<var id="To_BridgeC_x1"/>
<var id="To_BridgeC_y1"/>
<gcase id="bridgeC_handleOnRight"

case="leftC1_x1 >= bridgeC_x +
bridgeC_width" >

<constraint rule="To_BridgeC_x1 =
bridgeC_x + bridgeC_width"/>

<constraint
rule="To_BridgeC_y1 = bridgeC_cy"/>

</gcase>
<gcase id="bridgeC_handleOnTop"
case="bridgeC_x + bridgeC_width >=

leftC1_x1">
<constraint

rule="To_BridgeC_x1 = bridgeC_cx"/>
<constraint

rule="To_BridgeC_y1 = bridgeC_y"/>
</gcase>

</docase>

Such group alternatives were used in the LAN example in

������

�
�
�$

�
�%
��
�
�
�
�
�
��
�
�

&�
��
�
�
��
�
$
�#
�
�
�
$
��
��
'

����������
������� ��
���	�

!���

)(*�
���	�
������

(*�
��������

+
)����$���

*
��
$
��
	

�
�

��
�
�
�
�
�
�

��������#,����-
���%�������� �-

��"���������������

&��	������
��
�����������'

(��
��
����

)�����
����

Figure 8: Process of delivering a CSVG image across the
network.

Figure 4 to collapse subdiagrams when the available display
area becomes too small. Note that such pre-conditions must
be re-checked when viewing parameters change, because the
truth values can change dynamically (for example, due to re-
sizing). Therefore they, too, must make use of the constraint-
solver. However, they treat the constraint variables as read-
only.

Pre-conditions are not the only way to choose a group case.
It is also possible to switch to an alternative case interactively
in the browser. Consider a scenario where the browser col-
lapses some sub-diagram because of a lack of display space,
but the user needs to see the details of this group. The user
can thus decide to expand the subgroup explicitly, but since
the overall size of the diagram will exceed the display area,
the user will have to employ scrolling to view the rest of the
diagram.

3.1 A layout example
We can rewrite Figure 5 to specify constraints on the layout

of the class hierarchy, rather than giving exact locations for

494

all the parts of the illustration. Our CSVG description of the
image looks like the ordinary SVG image (Figure 1) under
“ideal” viewing conditions. However, the CSVG file is far
more flexible, and it will appear as shown in Figures 2 and 3
when the viewport dimensions are altered. An ordinary SVG
file would always appear as just a uniformly scaled version of
Figure 1.

For our CSVG version of the class hierarchy, we use a total
of 109 constraints. Each viewing condition, either portrait or
landscape format, employs 53 constraints that reflect typical
layout desires for viewing trees: nodes at the same level are
aligned horizontally (8 constraints), different levels are spaced
at equal vertical intervals (8 constraints), and all lines must
connect at the midpoints of nodes (28 constraints). Of the re-
maining 9 constraints for each alternative format, 8 are used
to maintain the midpoint of nodes and 1 is used to divide the
viewport into columns. The other constraints are for defining
constants such as vertical interval and the viewport midpoints.
An abridged version of the CSVG source appears as Figure 9.
See section 4 for timing details of this and following examples.

3.2 An interactive example
Consider the abacus shown in Figure 10, inspired by an ear-

lier constraint-based applet [8]. The diagram allows the user
to select and move beads on the abacus. Each bead is con-
strained to behave like the physical object and so must move
along the rod and cannot pass through another bead or through
the bar. For example, these constraints ensure that if the user
grabs a bead and pushes it upwards all the beads above it will
automatically be pushed with it.

This interactive abacus CSVG file has a total of 185 con-
straints and 419 variables. Each column of beads has 37 con-
straints that keep the beads attached to the rod (7 constraints),
maintain the bead size (7 constraints), ensure the beads to stay
in the frame (4 constraints), and keep the beads in their relative
order (19 constraints).

3.3 An animation example
Constraints relating object positions to the current time can

be used to support simple animations. Layout constraints are
even more compelling when parts of the image are moving:
the positions of the remaining objects can be described at a
high level, knowing that the solver will animate whatever other
objects need to move to maintain the specified desires.

Figure 11 shows four screenshots of our CSVG prototype
rendering an animation of a ball falling on a seesaw. The see-
saw.csvg image contains 18 constraints to support the anima-
tion: 12 for the positions of the various elements, 1 relating the
ball to the current time squared built-in variable, 1 stating
that the ball must remain above the left edge of the seesaw, and
4 describing that the seesaw can go neither through the floor
nor through the fulcrum.

4. IMPLEMENTATION
On the client side of the pipeline, we have implemented a

CSVG viewer to experiment with the additional expressive-
ness it provides. Our prototype is based on version 0.71 of
the CSIRO SVG Viewer [32] which is implemented in Java
and uses IBM’s XML4J parser version 2.0.15 [22]. Figure 12
presents the system architecture.

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg SYSTEM "svg-19990812.dtd" >
<svg style="fill:none; stroke:black;

stroke-width:1; font-size:16 ">
<!-- Defining constants -->
<var id="topMargin" value="5"

sw="strong" ew="weak"/>
<var id="sideMargin" value="5"

sw="strong" ew="weak"/>
...
<constraint rule="middleVertical =

viewport_width / 2"/>
<constraint rule="verticalSpace =

viewport_height / 4"/>
<constraint rule="middleHoriz =

viewport_height / 2"/>
...
<docase id="PortraitOrLandscape">
<gcase id="PortraitFormat"

case="viewport_width < 800">
<!-- Elements in Portrait Format -->
<text id="object">Object</text>
<text id="format">Format</text>
...
<line id="object_format"/>
<line id="format_dtf"/>
...
<!-- Divide viewport width into columns -->
<constraint rule="columnWidth =

viewport_width / 4"/>
<!-- Maintain the midpoint of nodes -->
<constraint

rule="object_cx =
object_x + object_width / 2"/>

<constraint
rule="format_cx =

format_x + format_width / 2"/>
...
<!-- Aligning nodes horizontally -->
<constraint

rule="object_cx = middleVertical"/>
<constraint

rule="format_cx = middleVertical"/>
...
<!-- Aligning vertically

at equal intervals -->
<constraint

rule="object_y = topMargin + 15"/>
<constraint

rule="format_y =
object_y + verticalSpace"/>

...
<!-- Attached lines to nodes -->
<constraint rule="object_format_x1 =

middleVertical"/>
<constraint rule="object_format_x2 =

middleVertical"/>
<constraint rule="object_format_y1 =

object_y + textMar-
gin"/>

<constraint
rule="object_format_y2 = format_y -

format_height - textMar-
gin"/>

...
</gcase>
<gcase id="LandscapeFormat"

case="viewport_width >= 800">
...

</gcase>
</docase>
</svg>

Figure 9: CSVG source of the object hierarchy for the
Java.text.Format class.495

Figure 11: CSVG animation of a ball falling towards seesaw. The position of the ball is directly related to the square of the
time offset, and the seesaw moves because of constraints describing its behavior.

Figure 10: Abacus with Constraint-based Interaction.

As with any XML language, CSVG is defined by its Doc-
ument Type Definition. Our CSVG DTD is a straightforward
extension of the SVG DTD. To the list of permissible children
of SVG group elements (svg and g elements), we added the
var, constraint, and docase elements. Then, we added the
definition of each new element and its attributes.

After the XML parser reads in the SVG document, we cre-
ate all the variable and constraint objects of the document, then
we feed them to a constraint solving engine. When the solu-
tion is available, the viewer renders the graphic objects. Every
time a user initiates a resize or movement of an object, the
new size or coordinate position of the object is used for set-
ting the associated constraint variables’ desired values. The
constraint engine then is called to find another solution that
reflects the new presentation of all graphic objects in the lay-
out. The same process happens when the validity of group
pre-conditions changes due to interactive manipulation. When
switching to a different gcase element, the constraints and
variables of the previous gcase element are removed from the
engine, and the new set of constraints and variables is added
before we re-solve the system.

The constraint solver is a core part of the implementation.
The current implementation employs a Java implementation
of the Cassowary constraint solving algorithm [3, 9, 27]. This
solver supports arbitrary linear arithmetic constraints (both
equalities and inequalities over real-valued variables). Cas-
sowary handles cycles without difficulty and handles both re-
quired and preferred constraints. The algorithm it employs is
an incremental version of the simplex algorithm that we have
optimized for interactive graphical applications.

When rendering the figure, we retrieve the values of at-
tributes from their associated constraint variables. For path
elements, we prefix names of constraint variables with the $
symbol to avoid ambiguity. For example, we write:

Constraint Solver
Initialisation

New Graphic Layout
New

Variable
Values

Constraint
Solver:
S o l v e

Update Variable
Desired Values or
Set of Constraints

Constraint-Based
Layout SpecificationConstraints,

Constraint
Variables

New Object
Positions or Sizes

+
New Set of Constraint

Preferences

Paint
Graphic
Objects

Constraint
SVG

Document

XML Parser +
Expression

Parser

User
Interaction

SVG Viewer

Constraint Solving Engine

Figure 12: Architecture of our implementation.

<path d="M $x $y l $dx $dy"/>

to move to the absolute coordinates held in x and y, and then
draw a line to the relative coordinates contained in variables
dx and dy.

We tested the performance of our prototype using a Dual
PentiumII 450 MHz machine running Java 1.2 with the
HotSpot virtual machine under Windows NT 4.0. For the
class hierarchy example, adding the constraints and the initial
solve requires 266 ms. Subsequent re-solves of the constraint
system when changing viewing format requires less than 200
ms. For the abacus example, adding all of its constraints
and variables to the solver and letting the solver initialize
itself requires 485 ms. Subsequent re-solves of the constraint
system when moving a bead along its rod require about 16 ms
each.

496

5. RELATED WORK
There is a long history of using constraints in interfaces and

interactive systems, beginning with Ivan Sutherland’s pioneer-
ing Sketchpad system [35]. Juno-2 is a more recent constraint-
based drawing application [20]. Constraints have also been
used in several other layout applications. IDEAL [37] is an
early system specifically designed for page layout applica-
tions. Harada, Witkin, and Baraff [18] describe the use of
physically-based modeling for a variety of interactive model-
ing tasks, including page layout. GLIDE [33] uses visual orga-
nization features (VOFs) to control layout of arbitrary graphs
using a spring metaphor and an iterative numeric solver. Nu-
merous systems use constraints for widget layout [28, 29], and
Badros and Stachowiak [5] use constraints for window lay-
out.

We have previously introduced CCSS, an extension of Cas-
cading Style Sheets with constraints [4]. Our CSVG motiva-
tion and philosophy is analogous to that of CCSS, and CCSS
is directly applicable to controlling style properties of CSVG
documents as well. The primary addition of CSVG beyond
CCSS is the ability to control non-style properties of SVG ele-
ments. This feature is necessary to control layout because the
positions of those objects are determined not by style proper-
ties but by element attributes. An earlier paper [8] had goals
similar to CCSS, but did not integrate as well with the emerg-
ing web standards.

Other style sheet languages including PSL (Proteus Style
Language) [26], DSSSL (Document Style Semantics and
Specification Language) [24], and XSL (eXtensible Style Lan-
guage) [12], delay finalizing various presentational attributes
of a figure until later in the delivery process, closer to the
viewing user. None of these style languages, however, attempt
to preserve layout desires to perform layout dynamically on
the client side.

Diehl and Keller describe constraint extensions to the Vir-
tual Reality Markup Language (VRML) [13]. Their extension
provides both local propagation constraint solving and also fi-
nite domain constraint solving. However, it does not provide
arbitrary linear arithmetic constraints which we believe are the
minimum required to adequately model geometric attributes.

The animation aspects of SVG and CSVG are related to the
Synchronized Multimedia Integration Language (SMIL) [21].
Another project called Madeus has used the Cassowary solver
to handle a wider range of constraints in multimedia docu-
ments [36]. Madeus provides support for both temporal and
spatial relationships, and includes a rudimentary authoring en-
vironment.

6. CONCLUSIONS & FUTURE WORK
Our constraint extension to SVG provides useful new ex-

pressiveness for describing illustration graphics at a higher se-
mantic level. CSVG permits deferring the actual layout of the
objects in the figure until client-side rendering, thus resulting
in greater flexibility in dealing with varied viewing environ-
ments and user desires. In particular, it allows semantic zoom-
ing, differential scaling, and semantics preserving manipula-
tion and interaction. In addition, it provides a unifying basis
for interaction and animation support.

There are substantial opportunities for future improvements
of CSVG. Constraint-based graphics documents are difficult

to author, and currently there are no authoring environments
for generating CSVG at the appropriate level of abstraction. It
is essential that drawing programs permit users to specify con-
straints interactively, maintain them dynamically throughout
editing, and ultimately reflect those constraints in the saved
CSVG file. Constraint-based graphics editors such as Cool-
draw [17], Aldus Intellidrawtm, and Noth’s CDA [30], as
well as SVG-capable editors such as Adobe Illustratortm or
Sketch [19], may provide a useful starting point.

Even in the presence of graphical editing tools for CSVG,
it may be beneficial to provide some syntactic extensions for
CSVG. Future versions of CSVG could support referencing
other elements’ attributes directly. It may also be useful to
permit even higher-level constraint abstractions in the CSVG
source. For example:

<align dir="horizontal" anchor="middle">
<!-- basic shape objects here -->

</align>

would permit easier specification of the intention that a set of
basic shapes are aligned in a row by their vertical centers. Con-
straints at this level also avoid problems that arise when object
structure changes. Suppose a basic shape is removed from a
diagram (e.g., manipulating the SVG DOM). In such a case,
should indirect relationships through that object remain or be
removed? If only the primitive constraints are present, the sit-
uation is ambiguous. With multiple objects being aligned with
a single declaration, the answer is clear—those objects should
remain aligned.

An important direction for future work is to extend the
power of the constraint solving algorithm, which currently
only allows linear constraints. This limitation is not implicit
in the design of CSVG, but is imposed by the solvers used in
the current implementation. In particular, we are working on
support for arbitrary one-way and multi-way constraints [34].
For example, a text element in a CSVG document could be
constrained to display the coordinates of a circle: moving the
circle would update the string, and editing the string would
move the circle.

Another area for future work is to better describe the seman-
tics of SVG in terms of constraints and constraint hierarchy
theory. This direction is similar to what we did for Constraint
Cascading Style Sheets [4] and it may provide a unifying im-
plementation mechanism for existing aspects of SVG as well.
In particular, some of the scripting events, such as onMouse-
Move, may be handled within this framework: a discrete ac-
tion (such as a button press) establishes a connection that then
is managed via a constraint relationship until a subsequent ac-
tion removes the constraint [25].

In conclusion, CSVG provides a surprising amount of ex-
pressiveness at a minimal implementation complexity and a
low performance cost.

Acknowledgments
Thanks to Vincent Hardy of the SVG Working Group for his
helpful feedback on our work, and to Jeffrey Nichols and
Denise Pinnel for their comments on a draft of this paper. Also
thanks to Jeffrey for his work on the CSVG web site. This
research has been funded in part by a U.S. National Science

497

Foundation Graduate Research Fellowship and the Univer-
sity of Washington Computer Science and Engineering Wilma
Bradley fellowship for Greg Badros, in part by NSF Grant
No. IIS-9975990, and in part by an Australian ARC Large
Grant.

7. REFERENCES
[1] Adobe Systems Incorporated. PostScript Language Reference

Manual. Addison-Wesley, Reading, Massachusetts, 2nd edition,
1990.

[2] V. Apparao, S. Byrne, M. Champion, S. Isaacs, I. Jacobs,
A. Hors, G. Nicol, J. Robie, R. Sutor, C. Wilson, and L. Wood.
Document object model (DOM) level 1. W3C
Recommendation, October 1998.
http://www.w3.org/TR/REC-DOM-Level-1.

[3] G. Badros and A. Borning. The Cassowary linear arithmetic
constraint solving algorithm: Interface and implementation.
Technical Report UW-CSE-98-06-04, University of
Washington, Seattle, Washington, June 1998.
http://www.cs.washington.edu/research/
constraints/cassowary/cassowary-tr.pdf.

[4] G. Badros, A. Borning, K. Marriott, and P. Stuckey. Constraint
cascading style sheets for the web. In Proceedings of the 1999
ACM Conference on User Interface Software and Technology,
November 1999.

[5] G. Badros and M. Stachowiak. Scwm—The Scheme
Constraints Window Manager. Web page, 1997-2000.
http://scwm.sourceforge.net/.

[6] A. Borning. The programming language aspects of ThingLab, a
constraint-oriented simulation laboratory. ACM Transactions on
Programming Languages and Systems, 3(4):353–387, October
1981.

[7] A. Borning, B. Freeman-Benson, and M. Wilson. Constraint
hierarchies. Lisp and Symbolic Computation, 5(3):223–270,
September 1992.
http://www.cs.washington.edu/research/
constraints/theory/hierarchies-92.html.

[8] A. Borning, R. Lin, and K. Marriott. Constraints for the web. In
Proceedings of 1997 ACM Multimedia Conference, 1997.

[9] A. Borning, K. Marriott, P. Stuckey, and Yi Xiao. Solving linear
arithmetic constraints for user interface applications. In
Proceedings of the 1997 ACM Symposium on User Interface
Software and Technology, October 1997.

[10] B. Bos, H. Lie, C. Lilley, and I. Jacobs. Cascading style sheets,
level 2. W3C Working Draft, January 1998.
http://www.w3.org/TR/WD-css2/.

[11] T. Bray, J. Paoli, and C. Sperberg-McQueen. Extensible markup
language (XML) 1.0. W3C Recommendation, February 1998.
http://www.w3.org/TR/REC-xml.

[12] J. Clark. XSL transformations. W3C Recommendation,
November 1999. http://www.w3.org/TR/xslt.

[13] S. Diehl and J. Keller. VRML with constraints. In Proceedings
of the Web3D-VRML 2000 fifth symposium on Virtual reality
modeling language, Monterey, California, February 2000.
http://www.cs.uni-sb.de/RW/users/diehl/
VRMLCONSTR/VRMLConstr.html.

[14] R. Duisberg. Animation using temporal constraints: An
overview of the Animus system. Human-Computer Interaction,
3(3):275–308, 1987.

[15] ECMAScript language specification, 3rd ed., December 1999.
ftp://ftp.ecma.ch/ecma-st/Ecma-262.pdf.

[16] J. Ferraiolo. Scalable vector graphics (SVG) 1.0 specification.
W3C Working Draft, December 1999.
http://www.w3.org/TR/1999/WD-SVG-19991203/.

[17] B. Freeman-Benson. Converting an existing user interface to
use constraints. In Proceedings of the ACM SIGGRAPH
Symposium on User Interface Software and Technology, pages
207–215, Atlanta, Georgia, November 1993.

[18] M. Harada, A. Witkin, and D. Baraff. Interactive
physically-based manipulation of discrete/continuous models.
In SIGGRAPH ’95 Conference Proceedings, pages 199–208,
Los Angeles, August 1995. ACM.

[19] B. Herzon. Sketch, a vector drawing program for unix. Web
page, 2000. http://sketch.sourceforge.net/.

[20] A. Heydon and G. Nelson. The Juno-2 constraint-based
drawing editor. Technical Report 131a, Digital Systems
Research Center, Palo Alto, California, December 1994.

[21] P. Hoschka. Synchronized multimedia integration language.
W3C Recommendation, June 1998.
http://www.w3.org/TR/REC-smil/.

[22] IBM AlphaWorks. XML for Java.
http://www.alphaworks.ibm.com/tech/xml4j.

[23] P. Ion and R. Miner. MathML. W3C Recommendation, July
1999. http://www.w3.org/TR/REC-MathML.

[24] ISO/IEC. Document style semantics and specification language
(DSSSL). ISO/IEC 10179, 1996.

[25] R. J. Jacob, L. Deligiannidis, and S. Morrison. A software
model and specification language for non-wimp user interfaces.
ACM Transactions on Computer-Human Interaction, 6(1):1–46,
March 1999.
http://www.acm.org/pubs/articles/journals/
tochi/1999-6-1/p1-jacob/p1-jacob.pdf.

[26] P. Marden, Jr. and E. Munson. PSL: An alternate approach to
style sheet languages for the world wide web. Journal of
Universal Computer Science, 4(10), 1998.
http://www.cs.uwm.edu/˜multimedia.

[27] K. Marriott, S. Chok, and A. Finlay. A tableau based constraint
solving toolkit for interactive graphical applications. In
International Conference on Principles and Practice of
Constraint Programming (CP98), pages 340–354, 1998.

[28] B. Myers, D. Giuse, R. Dannenberg, B. Vander Zanden,
D. Kosbie, E. Pervin, A. Mickish, and P. Marchal. Garnet:
Comprehensive support for graphical highly interactive user
interfaces. IEEE Computer, November 1990.

[29] B. Myers, R. McDaniel, R. Miller, A. Ferrency, A. Faulring,
B. Kyle, A. Mickish, A. Klimovitski, and P. Doane. The amulet
environment: New models for effective user interface software
development. IEEE Transactions on Software Engineering,
23(6):347–365, June 1997.

[30] M. Noth. Constraint drawing applet. Web page, 1998.
http://www.cs.washington.edu/research/
constraints/cda/info.html.

[31] R. Rao and S. Card. The table lens: merging graphical and
symbolic representations in an interactive focus + context
visualization for tabular information. In CHI’94 Conference
Proceedings, pages 318–322, 1994.

[32] B. Robinson and D. Jackson. SVG toolkit. Web page,
1999–2000. http://sis.cmis.csiro.au/svg/.

[33] K. Ryall, J. Marks, and S. Shieber. An interactive
constraint-based system for drawing graphs. In Proceedings of
the 1997 ACM Conference on User Interface Software and
Technology, Banff, Alberta Canada, October 1997.

[34] M. Sannella, J. Maloney, B. Freeman-Benson, and A. Borning.
Multi-way versus one-way constraints in user interfaces:
Experience with the DeltaBlue algorithm. Software—Practice
and Experience, 23(5):529–566, May 1993.

[35] I. Sutherland. Sketchpad: A man-machine graphical
communication system. In Proceedings of the Spring Joint
Computer Conference, pages 329–346. IFIPS, 1963.

[36] L. Tardif, F. Bes, and C. Roisin. Constraints for multimedia
documents. In Proceedings of the Second International
Conference and Exhibition on the Practical Application of
Constraint Technology and Logic Programming, Manchester,
United Kingdom, April 2000.

[37] C. van Wyk. A high-level language for specifying pictures.
ACM Transactions on Graphics, 1(2):163–182, April 1982.

498

